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The different regimes of bubble growth in a slightly supersaturated solution can
be correctly understood by plotting the rate of change of the bubble area, rather
than the radius, as a function of time.

In principle it should be possible to visualise the convective flow around our
growing bubbles by interferometric techniques. However, this would require
confining the bubbles in a Hele-Shaw type of geometry in order to shorten the
optical path.

The formation of pointy tips on freezing water drops is the cause of a crucial
aspect of ice preparation for a Curling match. [Comment received in connection
with freezing droplet video produced for the Gallery of Fluid Motion 2012]

The impossibility of predicting the side-effects of drastic techno-scientific so-
lutions to our (environmental) problems –e.g. geo-engineering– makes their
appropriateness questionable. This suggests that the wisest option is to start
doing a lot less of what we already know to be detrimental to the environment.
However, this can only happen if we manage to re-think our society outside the
dogma of economic growth.

The political neutrality of science is a myth that scientists should be wary of.
Inasmuch as science takes place in society, and as social life is inseparable from
politics, there is always politics at work in the production of science.

The central aspect of science in the ‘knowledge economy’ calls for scientists to
reflect on the broader implications of their work and whether they agree with
the underlying normative presuppositions concerning the optimal organisation
of society.

“We should be on our guard not to overestimate science and scientific methods
when it is a question of human problems; and we should not assume that experts
are the only ones who have a right to express themselves on questions affecting
the organisation of society.” [Albert Einstein, Why Socialism? Monthly Review
61(1), 2009 (originally published in 1949)]

Not too long ago philosophers and scientists were the same people. Today
scientists seem to be ‘highly-qualified’ labourers or ‘high-value human capi-
tal’. (Higher) education should recover a strong philosophical component in
order to form sensitive and critical citizens, rather than competitive individu-
als, “leaders” and neo-colonial “global citizens” . [Reflection after reading our
University’s 2020 Vision]

When looking at the current socio-economical order and power relations it is
hard to find room for optimism. However, there is room for hope; it resides in
the social movements that seek to maintain or recover the sense of community
life and organise to construct true autonomy and a world were many worlds fit.
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Publisher:
Oscar R. Enrı́quez Paz y Puente, Physics of Fluids, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Cover image:
Experimental image of in-line growing bubbles on watercolour background by Daniela
Flores Magón Bustamante

Copyright c© 2015. All rights reserved.

No part of this work may be reproduced or transmitted for commercial purposes, in
any form or by any means, electronic or mechanical, including photocopying and
recording, or by any information storage or retrieval system, except as expressly per-
mitted by the publisher.
ISBN: 978-90-365-3814-5



GROWING BUBBLES AND FREEZING DROPS:
DEPLETION EFFECTS AND TIP SINGULARITIES

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
Prof. Dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday the 14th of January 2015 at 16:45

by
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1
Introduction

1.1 Bubbles and some of their multiple manifestations

In Art and Society

Children’s Games (Kunsthistorisches Museum, Vienna), by Pieter Bruegel the Elder
(ca. 1526–1569), is a nice allegory of two of the motivations that lured me to the
path which lead to this thesis: the aesthetic beauty of fluid flow phenomena and the
ludic nature of the experimental work which is necessary to visualize or understand
the behaviour of fluids in diverse situations. Bruegel, in the characteristic style of the
Flemish Renaissance painters, presents us with a crowded scene of children absorbed
in all sorts of games –which might allude to the scientific endeavour in general–. A
direct connection with this thesis, besides the geographical one, is given in the lower,
left-hand corner where a child amuses himself blowing soap bubbles (shown in the
detail) in a manner only slightly different to what I have done in the lab during the
past few years.

Not only a long-lived source of amusement, bubbles have also been a recurring
metaphor in Western literary and pictorial traditions [1] to evoke the ephemerality
of life. This can be traced at least as far back as an ancient Greek proverb –here
in its Latin version– Homo bulla est: “Man is a bubble” [2]. These days, perhaps
the figurative use encountered most frequently comes from economics. Apparently
it was in the early ninetieth century [3] that ‘bubble’ was adopted as the nickname
for a process of significant increase in the price of a certain good, driven by specu-
lation, which ends in a sudden –and violent– collapse. Although the famous Dutch

1
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Figure 1.1: Children’s Games (Kunsthistorisches Museum, Vienna), by Pieter
Bruegel the Elder (ca. 1526-1569). The detail comes from the left-hand, lower corner
and shows a child blowing a soap bubble (center).
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“Tulip Mania” of the 1600’s is usually considered as first occurrence of this kind of
phenomenon [4], the term ‘bubble’ was taken up in connection to the plunge of the
South Sea Company stock value in England in 1720, regarded as the first international
stock market burst [3].

In Physical Sciences and Industry

Symbolic allusions aside, physical bubbles –volumes of gaseous matter which are
clearly, but subtly, delimited from their surroundings– have also elicited consider-
able scientific curiosity, and remarkably continue to do so, as testified by a grow-
ing body of literature on the topic [5–8]. Interest in them ranges from geophysics,
where bubbles might lead to volcanic eruptions [9–12] to the medical consequences
of bubble formation in the blood and tissues during decompression disease [13, 14].
Technological applications for bubbles are also abundant, such as ultrasound con-
trast agents [15], targeted drug delivery [16], biomass reactors [17] or treatment of
residues [18].

Bubbles can be classified according to three categories: what they are surrounded
by, what they are filled with and how they were formed. In terms of their surroundings
there are two options: gas or liquid. Sure, there can also be bubbles in solids, but these
were most likely trapped there when the solid was a liquid (e.g. glass [19–21], plastics
[22–25], metals [26] or some kinds of volcanic rock [27]) or otherwise formed by
an explosive event which temporarily fluidized the solid. Bubbles surrounded by
gas must be separated from it by a thin material, like a lipid or polymer shell or a
soap film [15]. Those in a liquid are the most common type and can have either a
separating shell or a direct interface with their encompassing medium.

Regarding their contents, the options are gas, vapour or a mixture of both. Al-
though vapour is a gaseous phase, it can coexist with its liquid and solid phases and
can be condensed back to liquid form by isothermal compression, whereas a gas can
do neither.

Finally, bubbles can be formed by direct mechanical means, chemical reactions,
cavitation, boiling or nucleation. The first two methods are easy to distinguish. Me-
chanical means are exemplified by forced mixing of a gas into a liquid [28], injec-
tion of gas through a needle [29], impact of an object and the ensuing gas entrap-
ment [30, 31], or the blowing of soap bubbles. Examples of bubble formation by
chemical reactions are electrolysis [32, 33], acid-base reactions such as vinegar with
baking soda, and fermentation processes [34]. Cavitation and boiling are perhaps a
bit difficult to separate. While both of them imply a phase change from a pure liquid
to vapour, cavitation is traditionally considered to be caused by pressure reduction
while boiling is caused by heating. However, the advent of laser-induced cavitation
broadened the definition to include a phase change caused by sudden, very localized
heating. Nucleation usually refers to the formation of gas bubbles in a solution which
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contains gas in excess of its saturation concentration. If it happens in the bulk, it
is called classical nucleation and it requires very high levels of supersaturation to
overcome the energy barrier for the formation of an interface inside the liquid [35].
For small and medium supersaturation, it requires the presence of pre-existing gas
cavities, known as nucleation sites [36]. Nonetheless, nucleation can also not be
completely separated from boiling. In a boiling process, bubbles are also said to nu-
cleate, usually on the walls of its container; whereas in order for boiling to start in the
liquid bulk, a high level of superheating is required [37] analogously to the classical
nucleation process for a supersaturated solution. Furthermore, in the boiling of nor-
mal tap water (which contains dissolved air) bubble growth occurs both by nucleation
of air bubbles and vaporization of water. The first bubbles observed in the bottom of
the pot where one heats water to cook pasta or something else, grow mainly because
the temperature increase makes the water supersaturated with respect to its content
of air but also because the interface created by these bubbles allows for some vapor-
ization of the liquid before the boiling temperature is reached; at which point boiling
properly starts.

1.2 Bubbles in supersaturated liquids

We now turn our attention to the kind of bubbles featured in this thesis: gas bubbles
growing in a supersaturated liquid solution. These are the kind of bubbles that grow,
among other places, in carbonated drinks [38–42], in the blood or tissues of scuba
divers undergoing decompression sickness [13, 14], in the degassing of magmas that
can lead to volcanic eruptions [9–12] or during solution-gas-drive oil production as
the pressure of the reservoir drops [43–47]. Although significant theoretical, numer-
ical and experimental works have been performed in connection with all these areas,
the understanding of how bubbles grow and interact when they are close to each other
is far from complete. Specifically, in the limit where supersaturation is low (ten times
lower than in carbonated drinks) to our knowledge there are no previous experimen-
tal studies. In this limit, bubble growth should take place quasi-statically, without the
influence of advection caused by the expanding bubble surface. Understanding what
happens in this regime is particularly relevant in the context of solution-gas-drive
where supersaturation develops at a very slow pace.

The amount of gas that can be dissolved in a liquid, i.e., its equilibrium concen-
tration c is directly proportional to the partial pressure P of that gas above the liquid.
This is stated by Henry’s law as

c = kH(T )P (1.1)

where kH is known as Henry’s coefficient and is a decreasing function of the temper-
ature T specific to each gas-liquid pair.
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A saturated solution with conditions T0, P0 and c0 will become supersaturated if
its temperature increases to Ts or the pressure is decreased to Ps. The supersaturation
coefficient is then defined as

ζ =
c0− cs

cs
(1.2)

where cs is the concentration that would be in equilibrium at the new conditions, i.e.,
cs = kH(Ts)Ps.

Upon supersaturation, gas will come out of the liquid until an equilibrium state
is restored, either by reaching cs in an open system (e.g. a carbonated drink left open
and gone ‘flat’) or by restoring some of the pressure above the liquid and settling at
new Pn, Tn and cn conditions in a closed system (e.g. a carbonated drink taken out of
the refrigerator, opened, closed again and left outside). It is known that most of the
gas escapes through the free surface by diffusion [40], but given the right conditions,
i.e., very large supersaturation or the presence of nucleation sites for moderate or low
supersaturation, bubbles will also form. Examples of this last case are carbonated
beverages [38–42, 48], bubble formation during decompression disease [13, 14], and
the ex-solution of gasses during oil extraction [43–47].

It is the limit of small supersaturation that interests us in this work. Whereas bub-
bly drinks have supersaturation coefficients ζ ranging from 2 to 5, all our experiments
were done with ζ < 0.5. Such low supersaturation is similar to what is expected dur-
ing oil extraction, where the pressure decreases very slowly (a few bar each day). It
has been observed in the oil industry that this leads to the growth of bubbles, which
can either produce what is known as ‘foamy oil’, where bubbles do not coalesce and
is therefore produced at a higher rate, or it can result in the formation of a continuous
gas phase that slows down the production.

Our objective is to look into the mechanisms of bubble growth and interaction
in the low supersaturation limit, where, to our knowledge, no previous experimental
studies have been done. As liquid we use water, and as gas CO2 (or N2 in a few
experiments). These choices are due to the ready availability of the liquid and the
relatively high solubility of CO2 in it. Theoretical solutions predict a quasi-static,
purely diffusion-driven growth, developing a concentration gradient in its surround-
ings, without influence of inertial effects due to the expanding bubble interface and
without natural convection. We shall see that this last consideration is not justified; in
fact, the concentration gradient leads to natural convection, which plays an important
role that changes the mass-transfer rate into the bubbles.

1.3 Freezing droplets and their singularities

If bubbles are usually gas cavities surrounded by a liquid (or sometimes a gas),
droplets can be their exact opposite: small volumes of liquid encompassed by gas
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(or sometimes a different liquid). Like for bubbles, there is no shortage of interest in
phenomena involving droplets. The behaviour of droplets as they impact and spread
on solid substrates [49], other liquids [50, 51], or granular materials [52] is still the
subject of ongoing investigations. They are also researched in connection to ink-jet
printing [53], levitation on hot [54] or moving surfaces [55], or explosive boiling [56].

When a water droplet is placed on a cold plate below its freezing temperature,
it will freeze from the bottom up and form a sharp singular tip at the end of the
process. As part of the playful exploration stimulated by the interaction with other
curious people, we began to explore this phenomenon, and what started as a ‘Fri-
day afternoon’ experiment soon turned into a serious investigation of the conditions
that determine the tip shape. This led to interesting experiments, which included the
freezing of 2D droplets in order to investigate the dynamics of the freezing front.
Besides the interest in pointy ice drops related to, for example, frost formation [57]
or solidification for freeze drying purposes [58], understanding the physics of solidi-
fication is crucial for processes like metal drop deposition or 3D printing.

1.4 This thesis

This thesis consists of experimental studies on two different topics: the diffusion-
driven growth of gas bubbles and the conduction-driven freezing of a water droplet.
The first takes place in a supersaturated dissolution of gas in water where bubbles
grow from pre-existing gas pockets which allow for the establishment of directional
mass-transfer processes, driven by local concentration gradients. The second occurs
when a liquid water droplet is placed on a cold plate and a phase change process
takes place from the plate up. Of the first, we study the effects that gas depletion of
the surrounding medium has on the growth rate of both isolated and neighbouring
bubbles. About the second, we investigate the formation of pointy singularities at
the top of the droplet in the final stages of freezing. The two have in common the
physical analogy between diffusive mass transfer and conductive heat transfer.

Chapter 2 is devoted to the experimental set-up that we built to study bubble
growth. It describes the design and construction of the system and the processes used
to prepare a saturated dissolution of CO2 in water and afterwards make it supersat-
urated by means of a controlled pressure drop. In fact, the experiment is basically
a rather high-tech soda machine. This chapter also explains the preparation of the
silicon chips with hydrophobic pits that we use as nucleation sites, and reports the
first tests and experiments performed.

In Chapter 3 we study the growth of an isolated gas bubble in a slightly supersat-
urated water-CO2 solution. In contrast to previous experimental works in higher su-
persaturation regimes, our observations of the evolution of the bubble radius differed
noticeably from theoretical solutions which, for diffusion-driven growth, predict that
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the radius, R(t), should be proportional to t1/2. We traced back and disentangled
the differences which were due to effects of the concentration boundary layer around
the bubble and the presence of the substrate. In the early phase, growth was slowed
down by the presence of the substrate; later on it was enhanced by the onset of density
driven convection.

In Chapter 4 we delve further into the onset of density driven convection, which
is caused by the density differences created by the development of a concentration
profile around the bubble. Such density variations had been consistently neglected in
previous works on bubble growth in supersaturated liquids, as they were deemed too
small to have a noticeable effect. Here, we show that they are indeed responsible for
the enhancement of the mass transfer rate into the bubble, and that we can predict the
time of convection onset with a simple argument. We also tackle a recurring question
that came up in many conversations and presentations on this topic, namely, whether
this phenomenon also happens for other gasses, such as N2.

Chapter 5 explores the interactions between bubbles that grow close to each other
under a small supersaturation. We compare the growth of an isolated bubble to pairs,
triplets in linear and triangular arrangements, and longer lines of bubbles at different
distances. Two kinds of interactions were distinguished: spatial interactions between
bubbles that grow close to each other simultaneously and temporal interactions which
take place through the gas depletion of the surrounding medium by bubbles which
grew previously from the same nucleation sites. As could be expected, the develop-
ment of natural convection enriches and complicates the interactions.

In Chapter 6 we turn to the formation of tip singularities in freezing water drops.
Although that phenomenon has been known for a long time and is clearly related to
the expansion of water upon freezing, a quantitative description of the tip singular-
ity has remained elusive. We performed systematic measurements of the tip angle,
and revealed the dynamics of the solidification front through experiments with 2D
freezing droplets in a Hele-Shaw cell. Our results suggest a universal, self-similar
mechanism, independent on the solidification rate, which is in good agreement with
the analytical model we propose.
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2
Growing bubbles in a slightly

supersaturated liquid solution ∗

We have designed and constructed an experimental system to study gas bubble growth
in slightly supersaturated liquids. This is achieved by working with carbon dioxide
dissolved in water, pressurized at a maximum pressure of 1 MPa and applying a small
pressure drop from saturation conditions. Bubbles grow from hydrophobic cavities
etched on silicon wafers, which allow us to control their number and position. Hence,
the experiment can be used to investigate the interaction among bubbles growing in
close proximity when the main mass transfer mechanism is diffusion and there is a
limited availability of the dissolved species.

∗Published as: [O.R. Enrı́quez, C. Hummelink, G-W. Bruggert, D. Lohse, A. Prosperetti, D. van
der Meer and C. Sun, Growing bubbles in a slightly supersaturated liquid solution, Review of Scientific
Instruments 84, 065111 (2013)].

9
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2.1 Introduction

We study the growth of bubbles by gas diffusion in a liquid, which is the mass transfer
mechanism when bubbles grow in a supersaturated solution. In experimental studies
carried out so far [35,38,39] the flow induced by the growing bubble on its surround-
ings might not be negligible. The consequence of this is larger growth rates than
expected for pure diffusion. In a solution that is only very slightly supersaturated,
bubbles should grow quasi-statically and hence exclusively by diffusion. In this pa-
per, after briefly introducing the context of supersaturated liquids, we describe an
experimental system in which bubble growth can be studied under favourable con-
ditions to isolate diffusion and where the number and position of bubbles can be
controlled in order to study the interaction among them.

2.1.1 Supersaturation and its occurrence

The de-gassing of a supersaturated gas solution in a liquid takes place in a wide range
of natural and industrial processes. Perhaps the most familiar examples are carbon-
ated beverages, which have motivated a large amount of research on the physics and
chemistry behind bubble formation, foaming and gushing in soda, beer and cham-
pagne [38–42]. Other examples include bubble growth in blood and tissues due to
decompression sickness [13], de-gassing of magmas during volcanic eruptions [9],
boiling-up of cryogenic solutions [59–61], production processes involving molten
polymers, metals or glass [22], and ex-solution of gases during oil extraction [43].

As described by Henry’s Law, the equilibrium (saturation) concentration, c, of
gas in a liquid solution at a temperature T is proportional to the partial pressure P of
the gas above the liquid:

c = kHP. (2.1)

Here kH , the so-called Henry’s constant, is specific to the gas-liquid pair and is a
decreasing function of temperature. If a gas-liquid solution, with concentration c0,
in thermodynamic equilibrium at a pressure P0 and temperature T0, is brought to
a lower pressure Ps and/or higher temperature Ts, it becomes supersaturated with
respect to the equilibrium concentration cs = kH(Ts)Ps at the new conditions. The
excess amount of dissolved gas can be characterized in terms of the supersaturation
ratio ζ defined by

ζ =
c0− cs

cs
=

∆c
cs

(2.2)

Clearly, supersaturation requires that ζ > 0.
Upon supersaturation, the excess gas must escape from the solution in order to re-

establish equilibrium (ζ = 0). In a quiescent liquid this can be a rather slow process
which involves diffusion through the free surface and formation of gas bubbles that
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rise through the liquid and burst at the surface. A familiar example of this is the
‘going flat’ of a carbonated drink that is left open, which can take a few hours. To
further illustrate this example we can consider the case of Champagne wines, studied
in depth by Liger-Belair [40]. In such drinks ζ ≈ 5 (with cs defined at Ps = 101 kPa).
A 0.1 l glass of Champagne contains an excess of ∼ 0.6 l of gaseous CO2 that, if left
alone, will escape the liquid. Contrarily to what might be expected, it has been shown
that only about 20% of the gas escapes inside the ∼ 2 million bubbles of average
diameter ∼ 500 µm that will be formed. The other 80% leaves directly through the
free surface [40], although not without help from the mixing provided by the swarms
of rising bubbles.

2.1.2 Bubble nucleation

The conditions necessary for gas bubbles to nucleate have been the object of sub-
stantial debate and study. Lubetkin [62] presented a list that illustrates the variety
of arguments that have been put forward to explain the discrepancies between nucle-
ation theory and experiments. The supersaturation ratio in the Champagne example
is low compared to the theoretical predictions of ζ > 1000 in order for homogeneous
nucleation to occur at room temperature [63]. Bubble growth below the homoge-
neous threshold requires the pre-existence of gas pockets [64] (nucleation sites) with
a radius equal to or larger than a critical value

Rc =
2σ

Psζ
, (2.3)

with σ the surface tension of the gas-liquid interface. This value is obtained by equat-
ing the concentration of gas in the liquid bulk (which immediately after supersatu-
ration is equal to c0) to the gas concentration at the surface of the gas pocket, given
by cb = kH(Ps + 2σ/R). The second term in the parenthesis is the Laplace pressure
jump due to a curved interface. A smaller gas pocket will dissolve quickly since the
concentration on its surface exceeds c0, causing an unfavourable concentration gra-
dient. Larger ones, on the other hand, will induce a diffusive flow of the dissolved
gas towards them and hence grow. In principle, nucleation sites might be provided
by suspended particles, crevices in the container or free small bubbles. However, the
latter are not stable. An undisturbed liquid which is left to rest will soon get rid of
free bubbles either by dissolution or by growth and flotation [36].

2.1.3 Our experimental set-up

It is our intention to study the growth of gas bubbles in a liquid with supersatura-
tion ζ < 1, where bubble growth times are expected to be long. To our knowledge,
there exist no previous experimental studies of diffusive bubble growth under such
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Figure 2.1: Photograph of the experimental system. The reservoir tank is located on
the right-hand side and inside the frame. The observation tank is outside the frame in
order to allow positioning of lights and cameras. The height of the frame is about 90
cm.
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+ degassing unit

conductivity/
temperature sensor

Figure 2.2: Scheme of the setup indicating the location of valves, pressure controllers,
and sensors. Here the position of the tanks is reversed with respect to the picture
shown in figure 1.

conditions. Previous studies have used values of ζ ∼ 2, which is comparable to the
supersaturation of carbonated soft drinks [35,38,65]. We shall probe the limit of very
slow degassing, first to observe the growth of a single bubble and then how bubbles
interact when growing in mutual proximity while ‘competing’ for a limited amount
of available gas.

In this chapter we describe an experimental system (fig.2.1) designed to prepare
a saturated solution and then supersaturate it by slightly decreasing its pressure (sec-
tions 2.2.1 through 2.2.5). It is through accurate pressure control that we can achieve
and maintain the small supersaturations desired for the experiments. Bubbles then
grow in pre-determined positions provided by crevices in a specially prepared sur-
face (sections 2.2.6 and 2.2.7). This technique allows us to control the number of
bubbles and the distance between them as we image their evolution digitally (section
2.2.8). Finally, in sections 2.3 and 2.4 we present the results of performance tests and
the outlook of the experimental studies to be performed in the future.
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2.2 Experimental set-up description

2.2.1 Stainless steel tanks

The system (figures 2.1 and 2.2) is composed of two stainless steel tanks with vol-
umes of 7 and 1.3 liters respectively. The larger one serves as a reservoir where a
solution of water saturated with gas can be prepared and stored. This mixture can be
transferred to the smaller observation tank where the experiments in controlled bub-
ble growth properly take place. A system of steel pipes and pneumatic valves connect
the tanks to each other and to the water and gas sources as well as to the drainage
system of the lab.

The tanks were manufactured from 3161 stainless steel (Het Noorden, Gorredijk,
The Netherlands), and are certified for a working pressure of 1 MPa. The reservoir
(figure 2.3) has a lateral flanged port for fitting a temperature/conductivity sensor
(section 2.2.4), a lateral viewing window made of metal-fused glass (Metaglas, Her-
berts Industrieglas), and a fluid inlet/outlet at the bottom. The plate that covers the
top of the tank has fittings for a magnetic stirrer head (Macline mrk12, Premex Re-
actor AG), a level switch (Liquiphant FTL20, Endress+Hausser Inc.), a water inlet,
and a gas inlet/outlet.

If we were to rely on natural diffusion for preparing the mixture of water sat-
urated with gas, experimental waiting times would be extremely long. Hence, the
reservoir tank is equipped with the aforementioned magnetic stirrer attached to a
285 mm gassing propeller (BR-3, Premex Reactor AG) and powered by an external
motor (Smartmotor SM2315D, Animatics Corp). Figure 2.4 shows how the mixer
accelerates the saturation process. Rotation of the propeller blades creates a low
pressure region around them. As a result, gas is sucked into the hollow stirrer axis
and blown into the liquid through holes at the end of the propeller blades. With this
system, the preparation of seven liters of saturated water takes less than one hour.

The observation tank (figure 2.5) has two lateral flanged ports: one for a temper-
ature/conductivity sensor like the reservoir, and the other for introducing a specially
designed tweezer (see section 2.2.7) designed to hold the substrates with nucleation
sites for bubble growth. This tank has three viewing portholes also made of metal
fused glass. These windows sit at 90◦angles from each other and allow for illumi-
nation and visualization of experiments (see section 2.2.8). The cover holds a level
switch and a gas inlet/outlet. Water enters and exits through the bottom of the tank.

2.2.2 Liquid and gas sources

Although in principle any transparent liquid-gas combination could be studied using
this setup, the only configuration used up to now and in upcoming experiments is
water with carbon dioxide. This mixture is convenient due to the high solubility of
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10 cm

Figure 2.3: The stainless steel reservoir tank used for preparing and storing a satu-
rated mix of H2O and CO2 at a maximum overpressure of 10 bar.



16 CHAPTER 2. THE EXPERIMENTAL SETUP

Figure 2.4: Sketch of the gassing mixer used. The rotation of the propeller blades
creates low pressure zone. As a result, CO2 is sucked into the hollow stirrer axis and
bubbled into the liquid through the end of the propeller blades

10 cm

Figure 2.5: The stainless steel observation tank. Part of the saturated mixture from
the reservoir is transferred to this tank to be supersaturated by dropping the pressure
in a controlled way. Bubbles grow on a sample held by the substrate positioner. The
process is visualized through the windows.
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CO2 in water (∼ 1.6 gCO2
/kgH2O at T = 20◦C and P = 0.1 MPa) compared to other

gases.
We use ultra-pure water (MilliQ A10, Millipore) degassed in line by a vacuum

pump (VP 86, VWR) coupled to a degassing filter (Millipak 100). The CO2 is pro-
vided by Linde Gas with 99.99% purity.

2.2.3 Pressure control

As stated in Henry’s Law, the quantity of a gas that can be dissolved into a liquid is
directly proportional to the partial pressure of the gas above the liquid. The propor-
tionality constant (Henry’s constant) reflects the solubility of the gas-liquid pair and
is a function of temperature. Therefore, by altering either pressure or temperature of
a saturated solution it is possible to take it to an under or supersaturated state. In our
experiments, we control supersaturation by dropping the pressure in the observation
tank and keeping the temperature constant.

The pressure at which the liquid is saturated in the mixing tank is controlled
through a regulator on the CO2 line of the laboratory which has a maximum working
pressure of 1 MPa. The value inside the tank is measured with a pressure transmitter
(Midas C08, Jumo GmbH) which is read out by a multiparameter transmitter (eco-
Trans Lf03, Jumo GmbH) that communicates with the general control interface (see
section 2.2.5)

The pressure in the observation tank is measured and controlled by a pressure reg-
ulator (P-502C, Bronkhorst) and flow controller (F-001AI, Bronkhorst). The pressure
regulator has a pressure range of 0.02-1 MPa with a measurement error of 5 kPa. The
flow controller has a working pressure range of 0.1-1 MPa and its flow range is 10-
500 ml/min. Since this type of control is based on a certain controlled volume, an
extra volume of 500 ml is placed between the measurement vessel and the flow con-
troller to permit a smooth regulation of the pressure. Figure 2.6 shows the pressure in
the observation tank during a bubble growth experiment (see section 2.3.2) where the
pressure is dropped from an initial saturation state and kept constant as the solution
degasses.

2.2.4 Monitoring concentration

Carbon dioxide reacts with water to form carbonic acid (H2CO3) which is unsta-
ble and dissociates into roughly equal amounts of hydrogen (H+) and bicarbonate
(HCO−3 ) ions. The amount of each chemical species and their molar conductivity
will determine the general conductivity of the solution [66]. This property is used to
monitor the concentration of CO2 during the saturation process in the mixing tank.
For preparing the solution, the water filled tank is pressurized with CO2 and the mixer
turned on. The rise in conductivity is immediately detected by the sensor and it satu-
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Figure 2.6: Example of a time series of pressure (squares) and temperature (cir-
cles) measurements in the observation tank during an experiment. The pressure was
decreased by 0.1 MPa from the saturation condition, and kept at a constant value
afterwards.

rates after some time. Measuring this property, therefore, serves as an indicator that
saturation has been reached. It is assumed that after 10 minutes of measuring a stable
conductivity value the desired state is achieved (see section 2.3.1).

In the case of the observation vessel, the measurement of conductivity serves as a
qualitative indicator of the amount of CO2 present in the mix. Upon de-pressurization
gas diffuses out of the solution. In the absence of significant mixing -as is the case
during experiments- the main mechanism of gas exsolution is diffusion out of the free
surface. Therefore a concentration gradient is established through the mixture and the
conductivity measurement close to the bottom of the tank is no longer representative
of the overall concentration of CO2.

Conductivity and temperature of the liquid in both vessels are measured with
2-electrode conductivity sensors with integrated Pt100 temperature probes (Condu-
max CLS16, Endress+Hausser Inc.) located near the bottom of each tank (fig.2.2).
Knowing the temperature during experiments is necessary in order to correctly quan-
tify the amount of supersaturation by knowing the correct value of Henry’s constant.
To avoid significant temperature variations, a hose (not shown in fig.2.1) is wrapped
around both thanks, through which water circulates at a temperature controlled with
a refrigerated/heated circulator (Julabo, F25HL). Figure 2.6 shows the temperature
in the observation tank during an experiment.
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2.2.5 Control and user interface

The elements of the experiment that require electronic control are the magnetic stirrer,
the level switches, the pneumatic powered valves and the flow regulator used for
gradual pressure release. Control of these elements, together with data acquisition of
the sensors, is done through a combination of programmable logic controllers (PLCs)
(BC9120, Bus Terminal Controller, Beckhoff) and a graphical user interface built in
National Instruments LABVIEW which communicates with the PLCs and the data
transmitters from the sensors.

2.2.6 Substrates for bubble nucleation

Controlling the positions where bubbles grow is of paramount importance for study-
ing the interaction of bubbles growing near each other as they ‘compete’ for the gas
available in dissolution. For this purpose we use silicon wafers of area around 1 cm2

with micron sized pits (of radius Rpit = 10−50 µm and depth∼ 30 µm) that function
as nucleation sites. The substrates are fabricated in a clean room using soft lithograpy
and Reactive-Ion-Etching (RIE) techniques which allow to create pits with a mini-
mum diameter of a couple microns and depths of a few tens of microns. In order to
ensure that gas will be entrapped inside the pits after being submerged in water, the
last step in the micro-manufacturing process is to create a super-hydrophobic ‘black
silicon’ [67] structure in the bottom of the pits. This guarantees that the air pockets in
the cavities will be stable and henceforth work as nucleation sites for bubbles to grow
upon de-pressurization. The feasibility and stability of such hydrophobic cavities as
nucleation sites has been successfully tested by Borkent et al. [68].

2.2.7 Substrate holder

The substrates are introduced and held in the observation tank using the holder shown
in figure 2.7. This device keeps the substrate at a level where it is visible through the
windows and separated (∼ 5 cm from the walls, in order to avoid interaction with
bubbles that might grow there. It consists of a set of tweezers (‘substrate gripper’ in
the figure) with one fixed and one mobile lever. The mobile one is actuated via the
push button on the right-hand side and a spring mechanism that runs inside the central
pin and keeps it in a closed position by default. The central pin can be slid back and
forth and rotated by hand by loosening the conical clamping nut which will keep it
fixed against the pressure in the tank. The clamping and adjustment bolts allow for
a fine positioning along the direction of the parallel pin on which the guiding taper
bush is mounted.

The substrate is mounted on the tweezers outside the tank and then introduced
through a flanged port (see figure 2.5) and secured with a single-bolt clamp. In this
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1 cm

Figure 2.7: The substrate holder. The section to the left of the flange is introduced in
the observation tank. The bolts on the right hand side are used to adjust the position of
the substrate from outside the tank and keep it fixed firmly against the high pressure
inside. The substrates can be held horizontally, vertically or at any angle in between
by rotating the central pin.

and all other flange connections, o-rings are used to ensure the water and air tightness
of the system.

2.2.8 Visualization

Images are taken using a long distance microscope objective (K2/SC, Infinity) with a
maximum working distance of 172 mm and a CCD camera (Flowmaster, LaVision)
with a resolution of 1376 x 1040 pixels. When experiments are done with the sub-
strate in a horizontal position diffuse backlighting is used. If the substrate is held
vertically light is reflected onto it though a half mirror in front of the microscope.

2.3 First experiments

2.3.1 Preparing a saturated solution

Firstly, we have tested how effective our system is for preparing a saturated water-
CO2 mixture and to what extent the measurement of conductivity serves as an indi-
cator of the concentration. As mentioned in section 2.2.4, CO2 in water dissociates
according to

CO2(aq)+H2O←−→ H++HCO3
−, (2.4)

with overall dissociation constant K1 = 4.22× 10−7 at 21◦C. The molar conductiv-
ities (Λo

i ) of the hydrogen and bicarbonate ions and their concentrations will deter-
mine the conductivity of the solution. The contributions of the dissociation of H2O
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and HCO3
– can be safely neglected. Hence, the conductivity (S) can be calculated as:

S = (Λo
H+ +Λ

o
HCO3

−)K1[CO2aq], (2.5)

where the concentration of carbon dioxide [CO2aq] is expressed in mol/m3, Λ
o
H+ =

348.22×10−4 Sm2/mol and Λ
o
HCO3

− = 40.72×10−4 Sm2/mol at 21◦C. Such a way
of determining the conductivity is expected to work only for low concentrations of
dissolved CO2, since due to its weak acidity, the ion concentration is not necessarily
linear with [CO2aq] [66].

Tests were performed by filling the reservoir tank with water, leaving about 3
cm of head space for gas. Subsequently, and after the pressure regulator of the gas
line had been set to the desired pressurization value, the CO2 inlet valve was opened.
At this time we also started the mixing propeller with a speed of 900 rpm so that
CO2 is forced into the liquid through the mechanism described in figure 2.4. The
gas inlet valve is kept open throughout this procedure in order to keep the pressure
rising as gas dissolves into the liquid. We monitored the conductivity measurement
of the sensor as it rose throughout the process. When its value did not change for 10
minutes we considered the solution to be stable, which was achieved after around 30
minutes of mixing as shown in figure 2.8. Henry’s constant was computed using the
van ’t Hoff equation for its temperature dependence: [69]

kH(T ) = kH(Θ)exp
[
C
(

1
T
− 1

Θ

)]
, (2.6)

where Θ is the standard temperature (298 K) and C = 2400 K for the case of CO2
[70]. The temperature during experiments, T was ≈ 21◦C, giving kH = 3.79×
10−7 mol/kg ·Pa. We then use Henry’s law to calculate [CO2aq] at the experimen-
tal pressure, and introduce this value into equation 2.5 to calculate the conductivity.
Figure 2.9 shows the measured and the calculated values for saturation (absolute)
pressures going from 2 to 11 bar. Agreement is very good until around 9 bar, when
presumably the concentration of CO2 can no longer be considered as low, compared
to the atmospheric concentration treated in [66].

2.3.2 Growing bubbles

After making sure that our method to prepare the saturated solution is effective, we
tested the bubble growing process from a single cavity and a pair of cavities. The
typical procedure of an experiment is the following: the whole system is flushed with
CO2 in order to expel atmospheric gasses. A saturated solution is prepared in the
reservoir tank and part of it is transferred to the observation tank where the substrate
with artificial nucleation sites was previously mounted on its holder. The filling is
done by first pressurizing the tank to the same level as the reservoir in order to avoid
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Figure 2.8: Pressure (a) and conductivity (b) in the reservoir tank during the filling,
pressurizing and mixing of the solution until saturation. The first jump of the conduc-
tivity corresponds to the immersion of the sensor in water as the reservoir is filled.
Once full, the pressurization and mixing start. The solution reaches saturation after
about half an hour.
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Figure 2.9: Conductivity of the saturated H2O+CO2 solution. Squares are the values
measured by the conductivity sensor after the preparation procedure. The solid line
is obtained with equation 2.5.

a sudden, high pressure inflow of (supersaturated) water. The valves that connect the
bottom of the two tanks (V5 and V6 in fig.2.2) are then open. Water flows slowly
into the observation tank driven by the slightly higher positioning of the reservoir.
The level switch (L2) closes the valves, thus ensuring that the tank is always filled
to the same level. After this procedure we wait for half an hour to let water become
completely stagnant. Then the experiment can start.

The mix in the observation tank is supersaturated by reducing the pressure of the
gas above it. Since we want to study diffusive growth without effects like inertia
or streaming which appear when bubbles grow quickly in succession as in the case
of, e.g., Champagne [40], the pressure is dropped only 5 to 20% from the absolute
saturation pressure, giving a corresponding range of supersaturation ζ = 0.05−0.25.
The critical radius (eq. 2.3) for a gas pocket to grow under the smallest ζ considered
is ∼ 5 µm, which means that hydrophobic pits of radius 10− 50 µm are very well
suited as nucleation sites under our experimental conditions.

Figure 2.10 shows a bubble growing from a pit with a 10 µm radius after a pres-
sure drop from 6.5 to 6 bar and figure 2.11 shows its radius as a function of time. The
size at which the bubble detaches is determined by a competition between buoyancy
pulling upwards and surface tension, pulling downwards. It is known as the Fritz
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Figure 2.10: Bubble growing on a substrate positioned horizontally with a single
pit of radius 10 µm after a pressure drop from 0.65 to 0.6 MPa corresponding to a
supersaturation ζ = 0.08. Time is expressed in seconds and radius in micro meters.

radius [71] and for a spherical bubble is given by:

RFritz =

(
3
2

σRpit

ρg

)1/3

. (2.7)

The last observed radius of the bubble in figure 2.10 before detachment was ∼
477 µm which is∼ 5 µm larger than the Fritz value for such a pit (with σ = 0.069 N/m
due to the presence of CO2). The discrepancy is about 1% and could be due to the
fact that the tracking method assumes a spherical bubble, and at this point the latter
is slightly deformed, or to small deviations in the pit’s radius. However, regardless
of the cause, this is the maximum error incurred in the image processing, which we
consider acceptable.

Two interesting things can already be pointed out from figure 2.10. The first is the
fact that the bubble took more than 15 minutes to grow to a radius of∼ 0.5 mm, which
makes it a safe assumption to say that the only mass transfer mechanism present was
diffusion. The second is that its growth was much slower than the solution of Epstein
and Plesset [72] for a bubble growing under such supersaturation, which, as expected
from diffusive processes predicts a R ∼ √t evolution. Their solution assumes an
unbounded bubble in an infinite medium, so the slowing down is probably due to the
presence of the substrate where the nucleation site is located. This feature will be
studied systematically with the present apparatus.

After the bubble detaches, another one starts growing from the same place. As
far as we have observed, this sequence continues for at least 12 hours. The amount
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Figure 2.11: Radius evolution of the bubble shown in figure 2.10 ◦ experimental
measurements, — theoretical solution for a bubble growing by gas diffusion in an
unbounded medium.

Figure 2.12: Two bubbles growing on a substrate positioned vertically with two pits
of radius 10 µm, separated 760 µm after a pressure drop from 0.65 to 0.6 MPa. Time
is expressed in seconds and radius (values correspond to left-hand bubble) in micro
meters.
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of undesired bubbles growing on the walls of the tank is small, which means that the
water is mainly degassing by diffusion through the gas-water interface above. The
stratification provoked by the escape of CO2 from the surface is gravitationally stable
and therefore will not give rise to density-driven convection unlike the opposite case
of an undersaturated liquid pressurized with gas from above [73]. This considered,
with the nucleation site sitting ≈ 15 cm below the surface, and the diffusivity of CO2
in water being D = 1.97×10−9 m2/s, the time for the diffusive penetration length
(δd = 2

√
Dt) to reach the bubble site should be about 1 month. In practice, the local

concentration around the nucleation site will eventually drop to a level where the
radius of the pit is less than Rcrit and the site will become inactive. However, we
expect that the bubble growth sequence can continue for a couple of days after the
initial pressure drop.

Finally, we have tested the case of two bubbles growing close to each other. Fig-
ure 2.12 shows two nucleation sites, separated 760 µm from which bubbles grow
after an equal pressure drop to figure 2.10. In this case the substrate was positioned
vertically and lit from the front through a half mirror. The growth of the pair of bub-
bles is slightly slower than the single bubble case, suggesting that each one of them
influences the growth rate of the other.

2.4 Summary and outlook

We have developed an experimental system with which bubble growth by gas diffu-
sion can be studied quantitatively. The method used to prepare a saturated solution
of CO2 in water by pressurizing and mixing in a reservoir tank while monitoring the
electrical conductivity has been shown to be effective. The position of bubbles grow-
ing when the solution is supersaturated by dropping its pressure can be accurately
controlled using hydrophobic pits on silicon wafers. First experiments with a sin-
gle bubble and a pair of them suggest that diffusion is indeed the only mass transfer
mechanism in action.

The next step is to take a close look at the sequential growth of bubbles from a
single nucleation site in order to understand the differences with the growth of an
unbounded bubble. Afterwards we will investigate how multiple bubbles interact
when growing in close proximity under low supersaturation conditions.



3
The quasi-static growth of CO2

bubbles ∗

We study experimentally the growth of an isolated gas bubble in a slightly supersatu-
rated water-CO2 solution at 6 atm pressure. In contrast to what was found in previous
experiments at higher supersaturation, the time evolution of the bubble radius differs
noticeably from existing theoretical solutions. We trace back the differences to sev-
eral combined effects of the concentration boundary layer around the bubble, which
we disentangle in this work. In the early phase, the interaction with the surface on
which the bubble grows slows down the process. In contrast, in the final phase, be-
fore bubble detachment, the growth rate is enhanced by the onset of density-driven
convection. We also show that the bubble growth is affected by prior growth and
detachment events, though they are up to 20 minutes apart.

∗Published as: [O.R. Enrı́quez, C. Sun, D. Lohse, A. Prosperetti and D. van der Meer, The quasi-
static growth of CO2 bubbles, Journal of Fluid Mechanics 741, R1 (2014)].
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3.1 Introduction

The diffusion-driven growth of bubbles in supersaturated liquids is a common oc-
currence in nature and technology. From carbonated drinks [38–42] to magmatic
melts [9] or oil reservoirs [43], molten polymers and metals [22], or even the blood
of whales or scuba-divers [13, 74], the appearance of gas bubbles might be anything
from beneficial to completely detrimental. They may be responsible for a pleasant
flavour enhancement but can also lead to volcanic eruptions or cause decompression
sickness or even death.

Theories, both including [75] and neglecting [72] the advective transport in-
duced by the radially expanding bubble interface, predict that the radius R grows
proportionally to

√
t (with a larger prefactor in the former case). Experimental stud-

ies using moderately supersaturated water-CO2 solutions (corresponding to that in a
carbonated beverage or beer) have confirmed such time dependence [35, 38, 39].

We perform an experimental study of the controlled growth of a single CO2 bub-
ble at high pressure (∼ 6 atm) in a hitherto unexplored low supersaturation regime,
which is an order of magnitude smaller than that of a typical carbonated beverage.
In contrast to other works in the moderately supersaturated regime, we find that the
concentration boundary layer around the bubble and the substrate on which the latter
grows have an important influence on the growth rate.

3.2 Experimental procedure and results

In the experiment, the desired supersaturation level is induced by a small, isothermal
pressure drop in a water-CO2 solution equilibrated at pressure P0 and temperature T0.
A suitable and controlled nucleation site is provided by a hydrophobic micro-cavity
of radius Rp = 10 µm and depth 30 µm, etched in the center of a small rectangular
silicon chip (8 mm×6 mm). A bubble grows from the pit until buoyancy overcomes
the surface tension (estimated as 61 mN/m in our conditions) that attaches it to the
pit, forcing it to detach [76]. After this, another bubble grows from the same site in
a process that can go on for hours. We take images with a digital camera and a long-
distance microscope objective at rates of 0.5-1 Hz. The smallest bubbles resolvable
with our optical resolution (∼ 2 µm/pixel) had a radius of about 10 µm. Figure 3.1
shows a sketch of the experiment and a detailed description of it can be found in [28].

Figure 3.2 shows the results of two different experiments in which the pressure
was reduced from the initial value P0 = 0.65 MPa (T0 = 21.6◦C) by 0.05 and 0.1 MPa.
Under these conditions it took the bubbles around 5 and 15 minutes, respectively, to
detach. Their final radius, Rdet ≈ 477 µm, agrees with the expectation for a quasi-
statically grown bubble [29].

The long detachment times and slow growth rates observed suggest that advec-
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Figure 3.1: Sketch of the experimental system. A saturated aqueous solution of CO2
is prepared in the reservoir tank and part of it transferred to a smaller observation
tank. Here the mix is supersaturated by means of a small, isothermal pressure drop.
In order to avoid residual currents in the observation tank, the liquid is allowed to
rest for thirty minutes after filling before the pressure is dropped. Temperature is
kept stable by circulating water from a refrigerated cooler through a hose wrapped
around the tank (see [28]). A bubble grows from a hydrophobic micro-pit etched
on a silicon wafer. The process is imaged through a window in the tank using a
long-distance microscope objective with diffuse back light through a window in the
opposite side.
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tion caused by the moving bubble interface is negligible. However, upon comparing
experimental results with the corresponding theory, significant discrepancies are evi-
dent:

• The radius is always smaller than the theoretical prediction and is not propor-
tional to

√
t (figure 3.2a).

• The derivative dR/dx, with x ∝
√

t, does not converge to a constant value.
Instead, the experimental curves only reach a plateau at a level 20-40% lower
than the theory and they take a longer time to do so (figure 3.2b). Furthermore,
the growth rate of the second bubble in each case (empty symbols) differs
from that of the first one (filled symbols). In figure 3.2b it becomes clear that
differences are limited to the early growth stages and the two curves for each
experiment eventually converge.

• Around x ∼ 20 there is a point where dR/dx starts increasing until eventually
it surpasses the maximum predicted by the standard theory summarized below.

In the remainder of this article we disentangle the causes of these differences,
which are: (i) the presence of the silicon chip, (ii) a region depleted of CO2 left
behind by the previously detached bubble, and (iii) natural convection triggered by
the density difference between liquid in the concentration boundary layer and outside.
This last phenomenon stands in contrast to previous experimental studies in which its
effects were not detected and therefore explicitly discounted by the authors [35, 38].

3.3 Analysis

Idealized problem

Before getting further in the discussion, let us briefly recall the idealized problem of
a bubble growing in an unbounded, supersaturated gas-liquid solution as formulated
by [72]. The equilibrium concentration of gas is given by c0 = kHP0 (Henry’s law),
where kH , Henry’s coefficient, is a decreasing function of temperature specific for
a given gas-liquid pair. Decreasing the pressure to Ps (at the same temperature T0)
leads to an out-of-equilibrium, supersaturated state. A bubble with an initial radius
R0 is placed in such a supersaturated liquid at t = 0. Initially, the concentration is
c0 everywhere, and far from the bubble it is assumed it will remain so. Neglecting
the Laplace pressure, the gas concentration at the bubble boundary is constant and
given by cs = kHPs. For the conditions discussed in this paper, it can be shown that
the influence of surface tension is limited to the very first instants of growth, so that
it can be neglected throughout. The bubble remains immobile with its center at the
origin of a spherical coordinate system. One can then solve the spherically symmetric
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Figure 3.2: Radius (a) and its derivative with respect to
√

t (b) in dimensionless form.
Symbols represent experimental data. Filled ones correspond to the first bubble to
emerge from the nucleation site and empty ones to the second. Circles correspond
to cs = 9.10 kg/m3 and squares to cs = 10.01 kg/m3. In (a) dark lines represent the
full analytical solution of eq. (3.1) for each case. The inset shows the same data
and theoretical curves in dimensional form. In (b) the theoretical curves for both
experimental conditions collapse to the dark solid line when they are divided by the
steady state value S. The local maximum observed for the red circles corresponds
to a slight initial overshoot and oscillation of the pressure controller, and therefore
is not present in the second bubble. The depressurization is complete and stable at a
dimensionless time around 11. For the smaller pressure drop, corresponding to the
squares, the overshoot is minimal.
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diffusion equation to evaluate the time evolution of the concentration gradient at the
bubble surface (r = R). Equating the gas flow caused by this gradient to the time
derivative of the bubble mass gives an expression for the quasi-static radial growth
rate:

dR
dt

= Dβ

(
1
R
+

1√
πDt

)
, (3.1)

where β = (c0 − cs)/ρ , D = 1.97×10−9 m2/s is the diffusivity of CO2 in water
and ρ ≈ 10 kg/m3 is the density of the gaseous phase at Ps. Equation (3.1) can
be conveniently expressed in terms of the dimensionless variables R̄ = R/Rp and

x =
√
(2Dβ/R2

p)t, where Rp is the radius of the nucleation site. In the original for-
mulation R0 was used as a length scale; but as this quantity is not defined in the
present experiment, we use Rp. Although the full analytical solution to the equation
can be obtained [72], the asymptotic solution:

R̄≈
[
γ +
(
1+ γ

2)1/2
]

x≡ Sx (3.2)

valid when R̄� 1 and x� 1, is a very good approximation. The constant γ is defined
as γ =

√
β/2π . The solid line in figure 3.2b shows dR̄/dx for the complete solution,

normalized by its asymptotic value, S, given by the terms inside the brackets in eq.
(3.2). We can see here how quickly the full solution to eq. (3.1) converges to this
long-term solution (horizontal dashed line in figure3.2b).

Note that the initial time t = 0 of the Epstein-Plesset theory is slightly shifted with
respect to the one used in plotting our figures due to the different initial conditions.
We could define a virtual initial time by fitting a square-root behavior to the first
few data points, but we do not pursue this possibility as its influence is very small
in comparison with the major differences between theory and experiments that are
apparent in figure 3.2.

As the bubble grows, the boundary layer, across which there is a concentration
gradient from cs to c0, also grows. Its thickness δ (from the bubble surface) grows
proportionally to

√
Dt and soon becomes of the order of, or larger than, the bubble

itself [72]. The assumptions made for the theory imply that δ = 0 at t = 0.
We are now in a position to address the issues (i) to (iii) mentioned before.

i. The role of the silicon chip

A clear difference between theory and experiments is that in the latter bubbles grow
on a substrate instead of an unbounded medium. This reduces the area available for
mass transfer through two effects. First, the bubble is no longer a full sphere, but
rather a spherical cap pinned to the perimeter of the nucleation site [35, 38, 39]. An
area equal to the opening of the pit will always be excluded. While such exclusion
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Figure 3.3: (a) Images of a growing bubble at t ≈ 1, 152 and 295 s with R = 20, 307
and 474 µm. In the first snapshot, the mirror image of the bubble on the silicon
surface is clearly seen below the real bubble. In the other two frames only a small
fraction of the reflection is visible. Before dropping the pressure and after each bub-
ble detaches the gas pocket is completely inside the pit and therefore not visible at
all. (b) Sketch to illustrate the interaction of the concentration boundary layer with
the silicon substrate. The excluded bubble area (dashed line) is estimated using the
cone formed by the center of the bubble and the intersection of the boundary layer
(shown by the bigger sphere) with the silicon chip.
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Figure 3.4: (a) Experimental dR̄/dx rescaled with S∗. Again, circles correspond to
cs = 9.10 kg/m3 and squares to cs = 10.01 kg/m3 whereas filled symbols correspond
to the first and open ones to the second bubble growing in each experimental condi-
tion. Corrections for effective diffusion area (solid black curve) and pre-existing
boundary layers for the first (red, dashed curve) and the second bubbles in both ex-
perimental conditions (blue (cs = 9.9 kg/m3) and green (cs = 9.1 kg/m3) curves).
The inset shows the measured time evolution of R̄ for the second bubble of both ex-
perimental conditions together with its corresponding corrected curve. (b) Sherwood
number (eq. (3.5)) as a function of the mass transfer Rayleigh number. The lines
have a slope of 1/4, which indicates that density driven convection develops around
the bubble.
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might be significant for a small bubble, by the time R̄ equals 5, it represents only
one hundredth of the bubble surface area (see figure 3.3a). Hence, this effect can
be considered minimal over the course of the entire bubble lifetime, and clearly it
cannot account for the 20-40% reduction observed in the plateau value of dR̄/dx
(figure 3.2b).

The second effect is that the substrate acts like a barrier which hinders mass
transfer into the bubble. This can be qualitatively estimated by removing the mass
diffusing across the dashed portion of the bubble surface shown in figure 3.3b, where
the larger sphere denotes the edge of the boundary layer of thickness δ =

√
πDt.

A simple geometrical calculation shows that the remaining “effective” area of the
bubble is given by

Aeff = 4πR2
(

1− 1
2

√
πDt

R+
√

πDt

)
≡ 4πR2 fA (3.3)

If we repeat the process to derive eq. (3.1) using the diffusion over an area Aeff
instead of over the full bubble surface area, we recover that same equation multiplied
by fA, the factor inside the parenthesis in eq. (3.3). An asymptotic solution can be
readily found for the equation, namely

R̄≈
[

γ +

(
1
2
+ γ

2
)1/2

]
x≡ S∗x, (3.4)

where the new term inside the parentheses, S∗, is smaller than S for the unbounded
case. In spite of the crude approximations that go into deriving eq. (3.4), the numer-
ical solution to the area-corrected equation (solid and dashed black curves in figure
3.4a) show markedly better agreement with experiments in the range x = 0−20.

It is worth noting that another difference with respect to the idealized problem is
that by remaining in contact with the silicon chip, the bubble is effectively moving
upwards. However it does so at a very small speed, equal to the radial expansion
of the bubble (Ṙ). In our experiments, the Péclet number (Pe = 2RṘ/D) during the
diffusive growth regime (plateau in the curves in figure 3.2b) has values of approxi-
mately 0.1 and 0.3, respectively, ruling out the possibility that the bubble translation
has a significant effect.

ii. CO2 depletion

Upon detaching, the first bubble leaves behind a region depleted of CO2, slowing
down the growth of the second bubble. This is shown as a delay in reaching the
plateau value in the dR̄/dx curve (figure 3.2b). Although this phenomenon was con-
sidered by [35] and related to the time it takes the following bubble to nucleate,
alterations in the growth rate after nucleation were not reported. We introduce the
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effect of an initially depleted zone into the theoretical model by modifying the initial
condition of uniform concentration everywhere to a linear gradient in the radial di-
rection from cs at r = R to c0 at r = L > R and uniform concentration farther away.
The resulting equation for dR/dt is then solved numerically with L as a fitting param-
eter which is adjusted to match the experimental curves. We found that L≈ 350 and
890 µm (figure 3.3a) match the observed slowing down of the respective second bub-
ble growth for the two experimental conditions. Subsequent bubbles, until around
the tenth, grow with only minor differences with respect to the second one, which
suggests that conditions in the system quickly settle to an approximately steady state.
After the tenth bubble (1-3 hours into the experiment), the plateau value of the deriva-
tive starts to decrease, indicating that the progressive loss of CO2 in the bulk of the
liquid starts to have a noticeable effect on the system.

As shown in figure 3.4a, fitting of the first bubble growth rate also requires a non-
zero value of L, namely L ≈ 250 µm. A likely explanation is related to the fact that
the pressure drop from P0 to Ps takes place over 30 s. It is conceivable that during this
time a concentration gradient of thickness∼

√
D×30 s' 243 µm will develop above

the pit and hence modify the “effective” initial conditions for the growing bubble.

iii. The onset of natural convection

Finally, we address the transition upward from the plateau value of the dR̄/dx curves
(figure 3.2). We conjecture that this increase is due to the onset of buoyancy-driven
convection near the bubble caused by the decrease of the density of the solution with
decreasing concentration. To support this hypothesis, we recast the experimental data
in terms of the Sherwood and Rayleigh numbers:

Sh =
2Rh
D

=
2RṘ
Dβ

(3.5)

Ram =
gλc(c0− cs)(2R)3

νD
(3.6)

where h = ρṘ/(c0− cs) = Ṙ/β is the mass transfer coefficient, g is the accelera-
tion of gravity, λc = 5.9×10−4 m3/kg is the concentration expansion coefficient of
the solution and ν = 10−6 m2/s is the kinematic viscosity. For natural convection
around a sphere in an infinite medium it is known that (Sh−Shp) ∝ Ra1/4

m [77], with
the constant Shp = 2 accounting for pure diffusion. We replot our data in this form
(figure 3.4b). The figure shows that initially the Sherwood number is constant, corre-
sponding to diffusive mass transfer. It then starts increasing towards a 1/4 power law,
consistent with natural convection around a sphere. This indicates that density driven
convection is developing around the bubble due to the lower density of the fluid in
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the concentration boundary layer, accelerating the mass transfer rate of CO2 into the
bubble.

3.4 Conclusions

Why is this phenomenon not observed under a moderate supersaturation ratio? In
a carbonated beverage c0/cs = 3−4, while in our experiments the values were 1.08
and 1.18. At moderate supersaturation, bubbles take well under one minute to reach a
0.5 mm detachment radius and advection by the moving interface is significant [35,
38, 39]. On the other hand, at our low supersaturations they take 5 to 15 minutes and
advection is negligible. It is plausible that in the first case there is just not enough time
for convection to fully develop into a steady state. However it is also conceivable that
advection pre-empts density-driven convection by ‘squeezing’ the boundary layer and
keeping it thin. Finally, it is possible too that convection is present in the background,
although masked by advection. If so, it might be possible to bring the effect into
evidence by consideration of dR̄/dx, rather than R̄(x), as we have done in figure 3.2b.
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4
The onset of natural convection

around growing bubbles ∗

In the previous chapter, we conjectured that the observed increased in the growth rate
of a bubble in a slightly supersaturated water-CO2 solution was caused by the onset
of density driven convection due to the developing concentration gradient around it.
As evidence of this, we showed that the dimensionless mass transfer coefficient –the
Sherwood number– of the bubbles follows a power law with exponent 1/4 when plot-
ted against the mass transfer Rayleigh number (Ram). While this is consistent with
the relations for natural convection around a sphere, by itself it does not provide a
criterion to predict when such convective motion should become patent. Therefore,
in this chapter we investigate the development of density driven convection around a
growing bubble. We look at the convection onset for CO2 bubbles under a supersatu-
ration ζ < 0.5 and show that we can reasonably predict the onset time with a simple
argument considering the buoyancy and drag forces on the depleted liquid around
the bubble. Then we take a look at whether convection also develops for bubbles of
a much less soluble gas, such as N2. We are led to conclude that the phenomenon
should, in principle, happen for any gas-liquid combination as long as the density of
the mix increases with the concentration of gas.

∗To be submitted as: [O.R. Enrı́quez, Andrea Prosperetti, Detlef Lohse and Devaraj van der Meer,
The onset of natural convection around growing bubbles].
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4.1 Introduction

How do bubbles grow in a slightly supersaturated gas-liquid solution? The answer, of
course, depends on what we understand by slight supersaturation. Leaving a formal
definition for later, we can consider typical bubbly drinks (soda, beer, or champagne)
as containing a moderate excess of gas. Our inquiry instead focusses on solutions
that are about ten times less supersaturated. In these, bubble growth should be driven
only by gas diffusion and can in principle be treated as a quasi-static process.

In the previous chapter we reported on an experimental study of a carbon diox-
ide bubble growing on top of a silicon substrate (figure 4.1). We observed significant
differences in the growth of such a bubble with respect to the expectations from previ-
ous theoretical [72,75] and experimental [35,38,39,78] works and disentangled their
causes. The main differences were: i) an initially slower (diffusion-driven) growth
rate, and ii) a later increase which both exceeded the predicted diffusive growth rate
and showed a time dependence different from the expected t1/2. The first was at-
tributed to the presence of the substrate, in contrast with the theory, which was formu-
lated for an unbounded bubble in an infinite medium, and the second to the onset of
natural convection caused by the reduced density of the CO2-depleted liquid around
the bubble. The mentioned previous experimental works targeted bubble growth at
supersaturations comparable to carbonated drinks or higher and found that the radius
indeed grew proportionally to t1/2, even in cases when the advection caused by the
expanding bubble surface was no longer negligible. The possibility of density-driven
convection was either not considered [38, 39, 78] or explicitly neglected [35].

In this chapter we further delve into the onset of natural convection around a
growing bubble, asking the following questions: a) what is the time for convection
onset and how does it vary with supersaturation? b) what is range of supersaturation
values for which we can expect natural convection to develop? and c) can we expect
this to happen for other gases (e.g. nitrogen) as well? We present a simple argu-
ment to predict the time at which convection influences the bubble growth rate and
find very good agreement with experimental measurements using CO2 bubbles. For
experiments with N2 we observe a change in the growth rate at the predicted time,
albeit with a different character than for CO2.

4.2 Diffusive bubble growth

4.2.1 Experimental conditions

Experiments start with an equilibrated solution of either CO2 or N2 in water at a
pressure, P0, of either 0.65 or 0.35MPa. The initial gas concentration, c0, is given by
Henry’s law: c0 = kHP0. We drop the pressure, gently and isothermally (T = 21◦C)
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to Ps in order to induce a supersaturation defined as

ζ =
∆c
cs

,

where ∆c = c0−cs, and cs is the gas concentration that would be at equilibrium at Ps.
A single bubble grows from a hydrophobized micro-pit, of radius Rp = 10 or 50 µm,
etched on a silicon chip and we track the time evolution of its radius, R(t), by imaging
it through a long-distance microscope objective. The size of the pit determines the
minimum supersaturation for which a bubble will grow as well as its detachment size
but does not directly affect the growth rate. The chips are rectangular in shape, with
length 3 cm and width 8 mm. The pit is located at half the width and 5 mm away
from the edge opposite to where the chip is held. This ensures that the bubble is far
from the holding device, where several bubbles usually grow, and also far enough
from the edges, where bubbles might grow on the micro-roughness caused by the
cutting process. Experiments with interacting CO2 bubbles, which will be treated in
the next chapter, suggest that bubbles which are more than 1.5 mm apart no longer
feel the presence of each other, hence we can be sure of the isolation of our bubble.
All experiments were done in the range 0.1 . ζ . 0.5; at higher supersaturation too
many bubbles grow on the walls of the tank and on the edges of the silicon chip and
so the quiescence of the liquid can no longer be ensured. Figure 4.1a shows a diagram
of the experimental system and a detailed description of it can be found in [28].

4.2.2 Theoretical considerations

Figure 4.1b shows a sketch of a growing bubble. The interior excess pressure due
to surface tension is always very small compared to Ps and can be safely neglected.
Hence, the gas concentration at the interface can be considered constant and equal
to cs and therefore, the bubble grows due to the diffusive gas flow driven by the
concentration difference ∆c and the gas diffusivity D. The idealized initial condition
is that the bubble grows from a radius R0 with concentration cs at the interface and c0
everywhere else. In practice, R0 cannot be determined, only estimated to be at most
the same volume as the nucleation site; furthermore, since the pressure change from
P0 to Ps takes place gradually (∼ 30s) the concentration difference is not established
instantaneously. However, the effects from this are limited to an initial transient and
have been treated in the previous chapter.

The asymptotic solution for the growth of an unbounded bubble in an infinite
medium with the aforementioned initial conditions, expressed in dimensionless vari-
ables, as obtained by [72] is

R̄≈
[
γ +
(
1+ γ

2)1/2
]

x≡ Sx, (4.1)
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Figure 4.1: Sketches of the experimental system and the growing bubble. a) A sat-
urated water-CO2 solution is prepared in the reservoir tank (V ≈ 7l) at a maximum
pressure of 1 MPa. After transferring part of the mix to the observation tank (V ≈ 1l),
we drop the pressure slightly in order to produce a small supersaturation. The bubble
grows from a nucleation site provided by a single hydrophobic cavity etched in a sil-
icon chip. We image it with a long distance microscope objective and a PCO camera
though a window in the tank. b) As the bubble grows, it develops a concentration and
density profile around it, extending a distance δ into the solution.

which is valid for R̄, x� 1. Where

R̄ =
R(t)
Rp

,

x =

√
2Dβ

R2
p

t, (4.2)

β =
∆c
ρ
, and

γ =

√
β

2π

with ρ representing the density of the gas at pressure Ps.
In the previous chapter, we found that the influence of the silicon chip, which acts

like an obstacle for mass transfer through part of the bubble area, can be approximated
with a correction to the asymptotic solution yielding

R̄≈
[

γ +

(
1
2
+ γ

2
)1/2

]
x≡ S∗x. (4.3)

In our experiments, β ∼ 0.1, so we find that S≈ 1 and S∗ ≈
√

2/2.
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CO2 N2
Diffusivity (D) 1.97×10−9 m2/s 1.88×10−9 m2/s
Henry’s constant (kH) 1.50×10−5 kg/m3Pa 1.68×10−7 kg/m3Pa
Expansion coeff. (λc) 5.91×10−4 m3/kg 3.57×10−4 m3/kg
Density (ρ) 9.89 kg/m3 6.29 kg/m3

Table 4.1: Properties of CO2 and N2 when dissolved in water at P = 0.55 MPa and
T = 21◦C. The large difference in the values of Henry’s constant accounts for the two
orders of magnitude change in solubility.

4.2.3 Concentration and density profile

As the bubble grows it depletes its surroundings of gas, developing a concentration
profile that extends a distance δ =

√
πDt into the solution (fig. 4.1b) and soon be-

comes larger than the bubble radius. Variations in concentration imply changes in
density, determined by the concentration expansion coefficient λc =

1
ρ
( ∂ρ

∂c ), which
for a dilute solution of gas in a liquid can be approximated as:

λc ≈
1

ρH2O

(
1−MH2O

Mgas

)
(4.4)

where M stands for molecular weight. Defined this way, a positive λc means that
density increases with concentration.

If the density of the saturated solution is ρ0, the value at the bubble surface is
given by ρs = ρ0(1− λc∆c). Table 1 shows the properties of aqueous solutions of
CO2 and N2. The fact that λc � 1, combined with a ∆c ≈ 1 kg/m3 (for our CO2
experiments, and much smaller for the N2 case) makes it tempting to neglect the
changes in density, which has routinely been done in most earlier works on bubble
growth in a supersaturated solution. However, as we will see later, the long growth
times of our bubbles require that we take their effects into consideration.

4.3 Results for CO2 bubbles

4.3.1 Observations of bubble growth

The typical bubble growth from our experiments is best appreciated by plotting the
derivative dR̄/dx, which represents the dimensionless rate of change of the bubble
area (see appendix). Following equation 4.3 this should be constant and approxi-
mately equal to S∗. Figure 4.2a shows dR̄/dx divided by S∗ for some experiments
with CO2 solutions at P0 = 0.35MPa. After the initial transient, there is a plateau
around the value of 1 which indicates diffusion-driven growth. Afterwards, the curves
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start rising as a result of the enhancement of mass-transfer by natural convection.
That this is indeed due to natural convection is seen when we recast the data into
a Sherwood number (Sh) and a mass transfer Rayleigh number (Rab), respectively
defined as:

Sh =
hL
D

=
2RṘ
Dβ

Rab =
∆cλcg(2R)3

νD

where h = ρṘ/∆c is the mass transfer coefficient (see appendix), and we use the the
bubble diameter as a length scale (L). Ṙ is the (dimensional) time derivative of the
radius, which is computed by numerical differentiation of the acquired time series
of R. When plotted this way (fig. 4.3), the rising part of the curve is described
by a power law with exponent 1/4, which is the expected relation between Sh and
Rab for natural convection around a sphere. Further direct evidence of the presence
of natural convection is obtained by comparing with experiments where the bubble
grows underneath the chip and between two parallel plates with a separation of 1
mm (fig. 4.2b). In the first case, an increase of the growth rate is still observed, but
at a slower pace, which is to be expected because of the geometrical inversion of
the problem where the presence of the chip makes it harder for the buoyant liquid
to rise. In the second case, the growth rate starts to rise but decreases again as the
bubble comes close to the other wall, which inhibits the possibility for convection to
develop.

4.3.2 Convection onset

The question that arises naturally is what is the critical Rayleigh number for con-
vection onset, or equivalently, since Rab is a time dependent parameter, at what time
does it take place. In order to investigate this, for all the experiments we carried out
we determine the onset Rab by fitting a horizontal line to the plateau and a power
law to the rising part of the Sh versus Rab curves. The transition is considered to be
the at the intersection of those lines, and the result of those measurements is shown
in figure 4.4. In all cases the best fitting power-law had a slope within 0.25± 0.2
consistent with figure 4.3. The fitting of the plateau was sometimes more difficult
due to its short duration and proximity to the initial transient. Therefore, the nature
of the procedure to determine the onset Rab accounts for the spread in the data. From
the Rab measurements in figure 4.4, we can extract both the radius and the time of
convection onset, and compare the latter with our estimate for the onset time, tons,
discussed in the next subsection (figure 4.5).
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a)

b)

Figure 4.2: Dimensionless rate of change of the bubble area, divided by its theoret-
ical (constant) value for a purely diffusive growth regime as a function of x ∼ √t
(eq.4.3). This value is calculated with the correction proposed in [79] to account for
the influence of the silicon chip. The leftmost rising part and horizontal plateau of
the curves are expected from diffusion-driven growth; the right-hand rising part sug-
gests the influence of convection. a) Experiments with P0 = 0.34MPa and a pit with
rp = 50µm and various supersaturations ζ . Here the bubble grew on top of the sili-
con chip. b) Experiments with P0 = 0.65MPa, a pit with rp = 10µm and ζ ≈ 0.182
with the bubble in different positions.
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Figure 4.3: Sherwood number, Sh, as a function of the mass transfer Rayleigh number
Rab calculated using the bubble diameter as a length scale with the same data as figure
4.2a. The line represents a 1/4 power-law, which indicates that in the advanced
stages, growth is driven by natural convection.
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Figure 4.4: Rayleigh number, Rab, based on the bubble diameter, at the moment
of convection onset as a function of supersaturation, ζ . Diamonds correspond to
experiments with P0 = 0.65MPa and rp = 10µm and circles to P0 = 0.34MPa and
rp = 50µm.
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Figure 4.5: Experimental and theoretical convection onset times, tons (solid symbols
and solid lines, respectively) as function of the supersaturation coefficient ζ . Dia-
monds (black) correspond to experiments with P0 = 0.65MPa and rp = 10µm and
circles (blue) to P0 = 0.34MPa and rp = 50µm. Open symbols show the bubble de-
tachment times and the dashed black line represents the theoretical detachment time,
tdet, of a bubble growing (on a surface) only by diffusion until a radius of 500 µm.
Inset: the green square and red diamond show the detaching times of bubbles in the
experiments by [35] and [38], respectively, which were done at higher supersatura-
tions. They reported no influence of natural convection. The convection onset time
tons predicted by our model for their experiments is shown in the corresponding green
and red lines. It is only very slightly below the detachment time, which provides a
possible explanation to why they did not observe natural convection.
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Onset time estimate

As mentioned earlier, when the bubble grows it creates around itself a region with
reduced gas concentration and smaller density than the fluid bulk. This configuration
–a light fluid underlying a heavier one– is unstable under gravity and hence the lighter
fluid will experience an upward buoyant force. In order to calculate this force, we
must calculate the volume, Vb, of what we will hereafter term the buoyant region
which is the spherical segment (of diameter d = 2R+2δ and height 2R+δ ) denoted
by the dotted line in figure 4.1b minus the volume of the bubble. With the bubble
radius and buoyant region growing, respectively, as R ≈ a

√
t and δ ≈

√
πDt, the

buoyant volume is given by

Vb ≈
π

3

[
(2R+δ )2 (R+2δ )−4R3

]
(4.5)

=
π

3

[(
12a2 +9a+2πD

)
(πD)1/2

]
t3/2 ≡ fV t3/2, (4.6)

where a = S∗
√

2Dβ . We stress that fV is a dimensional constant that depends on the
liquid and gas properties, and most importantly on the supersaturation.

We can then estimate the terminal rise velocity of the buoyant region by rec-
ognizing that the only forces acting upon it are buoyancy, Fb, and viscous (Stokes)
drag, Fd (the small density difference and quasi-static growth of Vb in the small su-
persaturation regime make the acceleration and therefore the added mass force on Vf

negligible). Therefore we have:

Fb ≈ ∆cλcρ0gVb (4.7)

Fd ≈ 6πudµ (4.8)

which combined lead to

u≈ ∆cλcgVb

6πνd
(4.9)

Note that for the force balance we must consider that the velocity difference between
the rising fluid and the descending fluid that comes to replace it is 2u.

In order for the liquid at the bubble interface to remain “fresh” – i.e. not depleted
of CO2– the ascending fluid should go away fast enough. The parameter that should
indicate this is the Reynolds number, Re= ud/ν . When Red ∼ 1, the rise velocity
caused by buoyancy is of the same size as ν/d, the velocity scale with which viscosity
is able to “fil” the space with depleted liquid from the vicinity. Using the above
expression for u:

Red =
ud
ν
≈ ∆cλcg fV

6πν2 t3/2 (4.10)
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from which we can straightforwardly obtain tons, the time at which Red = 1 as func-
tion of the experimental parameters

tons ≈
(

6πν2

∆cλcg fV

)2/3

(4.11)

In figure 4.5, we see that without any free parameter the onset time prediction
agrees very well with experimental measurements (in which the error is about 10%).
We also show, for reference, the experimental detachment times (tdet) and the theo-
retical ones if the bubbles would grow only by diffusion to a radius of 500µm (which
is approximately the detachment size from the Rp = 10 µm pit). Furthermore, we
include as well the detachment times of experiments by other authors [35, 38] who
reported no influence of natural convection in bubble growth but where, however,
the advection caused by the expanding bubble surface might not be negligible. Such
times are only slightly larger than our prediction for tons, which could explain why
convection was not observed. However, possibly there was indeed no natural con-
vection since at those values of ζ the quasi-static growth consideration on which our
analysis is based no longer holds, and if indeed present, it might be overpowered
by advection from the moving surface. We have found that when ζ ≈ 0.4, at the
moment of convection onset 2R ≈

√
πDt, which indicates the end of the validity of

quasi-static growth is near, since it requires that R�
√

πDt.
Finally, using fV t3/2 = Vb in eq. 4.10 we realize that Red is in fact a Grashof

number, divided by a factor 6π , with V 1/3
b as length scale. Multiplying it by the

Schmidt number (Sc = ν/D) we obtain a Rayleigh number based on the the buoyant
volume:

RaVb =
∆cλcgVb

6πνD
(4.12)

Figure 4.6 shows the values of RaVb at the start of convection for all our experiments.
In spite of their spread, the data show no dependence on ζ , unlike the Rayleigh num-
ber based on the bubble diameter, Rab, which clearly increases with supersaturation
(cf. 4.4).

4.4 The case of N2 bubbles

Now the picture is clear for CO2, which admittedly is a gas with an exceptionally
high solubility in water (indicated by Henry’s constant, kH). What happens if we turn
to a gas with a lower solubility like N2? The advantage of this lies in the chemical
inertness of the latter in water, whereas CO2 dissociates slightly. The diffusivity, D,
and expansion coefficient, λc, in aqueous solutions are similar for both gases, how-
ever, kH is about one hundred times smaller for N2 (see table 1), which leads to a an
equally smaller ∆c if the supersaturation ζ is the same as in the CO2 experiments.
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Figure 4.6: Rayleigh number RaVb , based on the buoyant volume Vb, at the moment
of convection onset as a function of supersaturation ζ . Diamonds correspond to
experiments with P0 = 0.65MPa and rp = 10µm and circles to P0 = 0.34MPa and
rp = 50µm.

The implications are clear when we remember that R∼
√

∆cDt/ρ : N2 bubbles will
grow much more slowly and Red will take much longer to reach a value of 1. Figure
4.7 shows the theoretical detachment (tdet) and onset (tons) times for the two gases.
Long as they are, it is feasible to do experiments for the times it takes N2 bubbles to
grow and to investigate if they develop convection. Some experimental dR̄/dx curves
are shown in figure 4.8, along with an example for CO2. Note that although the time
is very different in experiments with each gas, x is similar for N2 and CO2. The early
stages look very similar; in fact, the slowness of N2 bubbles allows for a smoother
plateau region, avoiding the hump in the CO2 curve which is due to the oscillations
of the pressure controller after the pressure drop. At the predicted tons there is a clear
change in behaviour for the N2 bubbles, but very different than in the CO2 case. To
understand the possible cause of this, it helps to interpret figure 4.8 using dimen-
sional terms: tons, R(tons) and δ (tons) are, respectively, 60 s, 300 µm and 610 µm for
the CO2 bubble; for the N2 ones, 3280 s, 210 µm and 4.4 mm when ζ = 0.304 and
2620 s, 230 µm and 4.0 mm when ζ = 0.457. I.e., whereas the onset radius, R(tons) is
of the same order, the onset time, tons and consequently the boundary layer thickness
are much larger for N2.

As we mentioned in section 4.2.1, during experiments it is not uncommon that
some bubbles grow on the edges of the silicon chip, which are at least 4 mm away. For
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Figure 4.7: Theoretical detachment (tdet, dashed) and convection onset (tons, solid)
times as function of the supersaturation coefficient ζ for CO2 (black) and N2 (blue)
bubbles. For thick solid lines P0 = 0.65 MPa, and for thin solid ones P0 = 0.34 MPa.
The detachment curves are calculated considering a final radius of Rdet = 500 µm,
corresponding to a pit radius of rp ≈ 10 µm.
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Figure 4.8: Normalized dimensionless rate of change of the surface area for one
CO2 bubble (black squares) and two N2 ones (red and blue circles). The vertical
dashed lines in corresponding colours indicate the predicted convection onset times
xons ∼

√
tons for each case (cf. fig.4.7).

CO2 bubbles this is not a problem since that distance is much larger than δ (tons) and
hence beyond the range in which they might interact. However, for N2 this distance
allows for considerable overlap of buoyant regions, which might cause that the onset
of mixing brings to the bubble surface liquid that is already depleted of gas. This is
consistent with the irregular growth rates that we observe in all our N2 experiments
after tons and with the lack of reproducibility beyond that point even though the initial
growth is reproducible and similar to CO2 bubbles. In addition, the mixing process
itself might be significantly altered in the case of N2 bubbles where, although the
amount of buoyant force is similar, the volume is much larger than for CO2 bubbles
(where it is of the order of the bubble volume).

4.5 Conclusions

We have shown that quasi-static diffusive bubble growth, driven by a small supersat-
uration of gas in a liquid solution can lead to natural convection that enhances the
bubble growth rate (figures 4.2 and 4.3). For experiments with CO2, the prediction
for the onset time agrees very well with measurements, despite the difficulty of deter-
mining tons precisely (figure 4.5). The prediction for tons suggests that, in principle,
density driven convection around a growing bubble can occur at any value of super-
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saturation as long as the detachment radius is large enough (figure 4.7). However,
this might not be the case when the interface moves fast enough to cause advection.
The verification of this is presently beyond our experimental capability.

For N2 bubbles, there is a clear transition taking place at tons, consistent with the
onset of mixing, but different than in the CO2 case due to the long range interactions
that are made possible by the very long growing times in this case (figure 4.8). That
we observe such transition with a gas one hundred times less soluble, suggests that
this can happen for any gas-liquid solution as long as the density of the mix increases
with gas concentration.

Appendix A: Physical interpretation of dR̄/dx

In order to understand what dR̄/dx physically represents, it is useful to express this
term using its dimensional components (see equations 4.2)

dR̄
dx

=
1

Rp

√
D ∆c

R2
pρ

dR
d
√

t
(4.13)

we then substitute d
√

t = 1
2 t−1/2dt = dt/2

√
t to get

dR̄
dx

=
2
√

t√
D ∆c

ρ

dR
dt

(4.14)

and finally make use of R≈ S∗
√

D ∆c
ρ

t to eliminate the dependence on
√

t

dR̄
dx

=
2R

S∗D ∆c
ρ

dR
dt

=
1

S∗D ∆c
ρ

d(R2)

dt
(4.15)

which makes clear that dR̄/dx is the dimensionless rate of change of the bubble area.

Appendix B: calculation of the Sherwood number

The Sherwood number Sh = hL/D represents the dimensionless mass transfer coeffi-
cient with length scale L and diffusivity D. For the case of a gas bubble growing due
to a concentration difference ∆c (kg/m3), Sh is constructed as follows:

Starting from the definition of the mass transfer coefficient, h

h =
ṁ

A∆c
(4.16)
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where ṁ is the mass transfer rate in kg/s and A is the bubble surface area in m2

respectively given by

ṁ = ρ
dV
dt

= ρ4πR2 dR
dt

(4.17)

A = 4πR2 (4.18)

and combined with 4.16 to give

h =
ρṘ
∆c

(4.19)

Finally, the bubble diameter, 2R, is used as the relevant length scale L, and hence

Sh =
ρ2RṘ
D∆c

=
2RṘ
Dβ

(4.20)



5
Interactions between gas bubbles

growing in a supersaturated solution ∗

How do gas bubbles interact with each other when growing in a slightly supersatu-
rated solution? We explore and discuss two types of interaction: a ‘spatial’ one, when
two or more bubbles grow near each other simultaneously and a ‘temporal’ one when
a bubble grows from a nucleation site from which one or more bubbles have grown
and detached before. In the first case, bubbles directly affect each other’s growth rate
depending on the distance between them and the number of neighbours. In the second
case, the interaction takes place through the gas depletion of the surrounding liquid
by a growing bubble, which, upon detaching, leaves modified initial conditions for
its successor. Comparing to the single bubble case, we start from pairs and triplets
in linear and triangular arrangements and finally turn to a line of many growing
bubbles. For a sequence of bubbles we observe the mixed effects of the two kinds
of interaction, leading to subtle phenomena which are enriched by the fact that un-
der low supersaturations bubble growth is initially driven by diffusion but eventually
develops a density-driven convective flow around it which enhances the growth rate.

∗To be submitted as: [O.R. Enrı́quez, Andrea Prosperetti, Detlef Lohse and Devaraj van der Meer,
Interactions between gas bubbles growing in a supersaturated solution].
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5.1 Introduction

So far, we have treated a bubble growing in isolation. However, that is rarely the case
in natural (or industrial) occurrences of bubble formation in supersaturated solutions.
In general, when bubbles grow in such a solution, multiple nucleation sites are present
and their position cannot easily be controlled. Bubbles growing close to each other
are expected to interact since their growth relies on incorporating gas molecules from
the solution. Therefore, the presence of a nearby bubble implies a competition for a
limited available species. Furthermore, in a bubbling process where the nucleation-
growth-detachment cycle is short, bubbles will also interact by mixing the solution
as they detach and rise [40, 80].

Perhaps the ultimate example of bubbles neighbouring each other is foam, where
a mixture of liquid and gas develops bubbles which are separated only by very thin
liquid films, usually stabilized by the influence of a surfactant. Foams have been
studied in connection to production of polymeric foams [22–25], the degassing of
magmas that can lead to volcanic eruptions [9, 10] and stout beers [42]. Another
case receiving considerable attention is the formation of ‘foamy oil’ which is a phe-
nomenon that happens when dissolved gasses start coming out of the solution during
oil production [43–47], and which has the extra complication of occurring inside
porous materials [81–83].

Bubbles growing close to each other in smaller numbers have been studied by
Karapantsios, et al. [84] in connection to bubble formation on heaters. In such a case,
bubbles grow due to the supersaturation induced by the local heating of the liquid
(below the boiling point) and are usually detrimental for heat transfer purposes [85].
These studies were carried out at low gravity conditions in order to suppress the
influence of buoyancy, and the authors observed that two bubbles growing next to
each other do indeed slow down each other’s growth rate. Earlier experiments with
electrolysis [32] and high levels of supersaturation [86], had already observed that
neighbouring bubbles do not follow the R∼ t1/2 growth predicted for single bubbles.

As mentioned, authors studying interacting, growing bubbles have based their
comparisons on several experimental works that have confirmed that a single bubble
follows the R ∼ t1/2 growth obtained in the theoretical solutions of e.g. Epstein and
Plesset [72] and Scriven [75]. However, in the previous chapters we have seen that,
in the low supersaturation limit, the development of a concentration profile around
the bubbles gives rise to density-driven natural convection that enhances the mass
transfer rate. We will see that this continues to play an important role when bubbles
grow close to each other.

Besides the numerous situations where bubbles can grow close to each other,
‘competitive’ diffusive processes have been studied in connection with nanoelectrode
arrays, where the overlap of the diffusion layers of the individual elements influences
the behaviour of the array [87, 88]. Another analogous situation can be found in the
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non-equilibrium growth of crystals by deposition which can lead to the formation of
complex patterns [89].

5.2 Experiments

All experiments in this chapter started from a saturated water-CO2 solution at P0 =
0.65 MPa with the initial gas concentration given by Henry’s law: c0 = kHP0. We
drop the pressure smoothly (in thirty seconds) and isothermally (T = 21◦C) to Ps =
0.55 MPa . The resulting supersaturation ζ of the solution is defined as

ζ ≡ ∆c
cs
≈ 0.18,

where ∆c = c0− cs, and cs is the gas concentration that would be at equilibrium at
Ps, i.e., cs = kHPs. The extra pressure induced by the bubble curvature is negligible
for the experimental conditions used here. As nucleation sites, we use hydrophobic
pits etched on a rectangular silicon substrate with length 3 cm and width 8 mm. The
substrate is held in the center of the observation tank by a device introduced and fixed
through a porthole at half the tank depth. This way, the bubbles grow far away from
the walls and bottom, where some bubbles may grow as well, and also far from the
region near the free surface where significant degassing takes place. The pits are
located at half the width and 5 mm away from the opposite edge to the holding point
(see figure 5.1). This ensures that the bubbles are far from the holding device, where
some bubbles usually grow, and also far enough from the edges, where bubbles might
also grow on the micro-roughness caused by the cutting process.

We use the following configurations of nucleation sites (see fig. 5.1):

• Single pit

• Pairs at distances l = 570, 760, 1000 and 1500 µm

• Triplets in a line at l = 760 and 1000 µm

• Triplets in triangular arrangement at l = 760 and 1000 µm

• Fourteen in line (only six within view) at l = 570 µm

In all cases the pits have a radius Rp = 10 µm.

5.3 The growth of a single bubble

The growth of a single bubble in the above experimental conditions has been studied
in the previous two chapters. After emerging from its pit, a bubble initially grows
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Figure 5.1: Diagram of the pit configurations used in experiments. a) pair, b) triplet
in line and c) triangular triplet. All pits have a radius of 10 µm. d) Sketch of the
silicon chips, showing their dimensions and the positioning of the pits. e) Sketch of
two bubbles growing side by side, separated a distance l. Their concentration profiles
overlap with a length h and volume Vov (shaded region).
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Figure 5.2: Snapshots from experiments with a pair of bubbles at distance l =
1000 µm and a line triplet with l = 760 µm
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Figure 5.3: Snapshots from experiments with a triangular triple at distance l =
760 µm and a line l = 570 µm
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driven by gas diffusion but with a lower growth rate than the theoretical prediction
for a bubble in an unbounded medium [72]. This has been shown to be largely due
to the influence of the substrate on which the bubble grows, which partially obstructs
mass transfer. Later on, the growth rate starts to increase, and R(t) is no longer
proportional to t1/2, as was the case in the diffusive regime. This is due to the onset
of density driven convection that originates from the concentration profile that forms
around the bubble as it grows. As was shown in the previous chapter, the time at
which convection becomes dominant for the bubble growth rate can be predicted
from experimental parameters, considering the balance between the buoyancy of the
gas depleted region around the bubble and viscosity.

The asymptotic solution for the diffusion-driven growth of an unbounded bubble
in an infinite medium, expressed in dimensionless variables, as obtained by [72] is

R̄≈
[
γ +
(
1+ γ

2)1/2
]

x≡ Sx, (5.1)

which is valid for R̄, x� 1. Where

R̄ =
R(t)
Rp

,

x =

√
2Dβ

R2
p

t,

β =
∆c
ρ
, and

γ =

√
β

2π

with ρ representing the density of the gas at pressure Ps.
In [79], we found that the influence of the silicon chip, which acts like an ob-

stacle for mass transfer through part of the bubble area, can be approximated with a
correction to the asymptotic solution yielding

R̄≈
[

γ +

(
1
2
+ γ

2
)1/2

]
x≡ S∗x. (5.2)

In our experiments, β ∼ 0.1, so we find that S≈ 1 and S∗ ≈
√

2/2.
The detachment radius of the bubble is determined by the competition between

buoyancy, that pulls the bubble upward, and surface tension that keeps it pinned on
the pit and is given by

RF =

(
3
2

σRpit

ρg

)1/3
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For pits with Rpit = 10 µm, the detachment radius is RF ≈ 470 µm, considering a
slightly reduced surface tension of σ = 0.069 N/m and slightly increased liquid den-
sity of ρ = 1010 kg/m3 due to the dissolved CO2. In experiments we observe small
variations around that value which are attributable to small differences in the hy-
drophobic coating of the pits fabricated in different occasions.

For a single bubble it was also observed that the first bubble that emerges from
the pit has a slightly different initial behaviour than the subsequent ones. The cause
of this, which was treated in [35], is that the first bubble grows in a medium with ho-
mogeneous gas concentration, under conditions that actually resemble the theoretical
scenario. Upon detaching, the bubble leaves behind itself a slight local gas depletion
that slows down the growth of the following bubble. The size of the depleted region
must be a fraction of the volume affected by the concentration profile that develops
around the bubble. For quasi-static, diffusive growth, this region theoretically extends
a typical distance δ =

√
πDt, the boundary layer thickness, from the bubble surface.

A rough estimate can be made considering that the bubble, upon detaching, takes with
it half of the depleted volume, leaving the other half behind to fill the place left by
the bubble. However, since density driven convection takes place during a significant
time of the bubble lifetime, the real extension of the concentration profile cannot be
easily calculated. In chapter 3 we estimated the extension (L) of the depleted area by
solving numerically the diffusion problem with an initial linear concentration profile
over the length L, using this quantity as a fitting parameter to match our experimental
observations. For the experimental conditions of the experiments reported here, we
found L ≈ 380 µm for bubbles detaching at Rdet ≈ 470 µm after growing for about
300 seconds.

5.4 Growth of two neighbouring bubbles

We start our exploration of interacting bubbles looking at pairs at different distances.
The interaction between them should be determined by how much each one of the
modifies the medium surrounding the other one. For purely-diffusive growth, bubbles
are expected to start competing for the surrounding gas at some point, thereby reduc-
ing their growth rate [84]. A phenomenon like Ostwald ripening [90], where small
bubbles dissolve and large ones grow larger for a more favourable energetic con-
dition, is not expected to happen (and indeed was never observed) since the Laplace
pressure jump is negligible for bubbles larger than a few microns in radius, and hence,
surface-tension-induced concentration differences are negligible when compared to
the pressure-induced ∆c.

It is reasonable to expect that the interaction is mediated by the overlapping con-
centration profiles (figure 5.1). For two bubbles with a distance l between them and
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equal radii, R, we define the dimensionless overlap as

h∗ =
h

2δ
=

2(R+δ )− l
2δ

(5.3)

Thus, h∗ < 0 indicates no overlap, h∗ = 0 is the moment where the concentration
profiles “touch” each other, at h∗ = 1/2 the profile reaches the other bubble (see
figure 5.1e) and h∗ = 1 occurs when the bubbles physically come in contact and
detach.

Simultaneous growth

In figure 5.4 we compare the experimental value of the dimensionless rate of change
of the bubble area (dR̄/dx) for pairs of bubbles at distances l = 1500, 1000, 760, and
570 µm, with single bubble experiments at the same supersaturation conditions and
pit radius. The dimensionless separation between the bubbles is defined by dividing
l with twice the detachment radius of an isolated bubble, RF

l∗ =
l

2RF
(5.4)

therefore, in these experiments l∗ ≈ 1.6, 1.1, 0.8 and 0.6.
There are two pairs of symbols in each graph, corresponding to the first and

second pairs of bubbles that come out of the pits. The first pair always shows a peak
in the early stages of growth, which is due to the pressure drop process. Bubbles
usually emerged from the pits around 10 seconds after the pressure drop began. This
time depends on the size of the gas pocket trapped inside the pit. We can estimate
the maximum possible size of the gas pocket –the volume of the pit– but its real size
cannot be determined and furthermore, slight variations in the characteristics of the
inner coating would lead to different pinning (size) of the gas cavity. Thus, the bubble
is initially growing with a pressure that decreases in time, with some overshoot (about
5 kPa) and oscillation of the pressure controller before reaching stability. The second
pair has a smooth rise towards the plateau, during which diffusion drives the bubble
growth. The smooth rise is due to both the stability of the pressure at that point and
the slower initial growth caused by local depletion. For each pair of bubbles growing
simultaneously, their curves overlap, reflecting their symmetric situation. In each
graph, we also show the growth rate of the second bubble from an isolated nucleation
site under the same experimental conditions and the value of h∗.

Starting with the bubbles that are farthest apart (l = 1500 µm, figure 5.4a), we
notice that their growth largely coincides with the one of an isolated bubble. How-
ever, in the final stages of growth the bubble pair curves lie slightly above that of a
single bubble, starting around the time when h∗ ≈ 0.5. Although this increase is quite
small, it is consistently found in all of our measurements such that we are confident
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to consider it a true effect. This suggests a subtle interaction mechanism, enabled
by the density-driven mixing. Apparently, the bubbles are far enough to avoid com-
peting for the gas around them but close enough to collaborate through the mixing
caused by the natural convection around them, thereby transporting depleted liquid
away and bringing “fresh” liquid to their vicinity in a more efficient way.

When bubbles are closer together (l = 1000 µm, figure 5.4b) varied interactions
appear in different stages, specially for the second pair. In this case, the initial growth
rate is slowed down in more pronounced way than for an isolated bubble or two more
separated ones. This is due to the combined depletion of the liquid by the previous
pair (which will be treated in greater detail later in this section). Afterwards, we
observe again a collaborative interaction in the earlier onset of the convective regime,
which also happens around h∗ ≈ 0.5. However, this only happens for the second
bubble pair, suggesting that the depletion from the previous pair also plays a role in
this. Towards the end, the boundary layer of the bubbles (both the first and second
pair) start interfering with each other and their growth rate stalls when h∗ ≈ 0.85.

Moving the pits a bit closer (l = 760 µm, figure 5.4c) we again see a slower initial
growth rate of the second bubble pair with respect to the isolated one, followed by a
slightly higher slope at the start of the convective regime, which once more indicates
collaborative mixing. However, this starts for a larger overlap than in the previous
cases (h∗ ≈ 0.75) and it ends quickly, as the bubbles get close enough to compete and
stall their growth rates (h∗ ≈ 0.85). What happens at the end is somewhat intriguing:
the growth rate of both bubbles becomes erratic. Our explanation for this is that the
mixing at that point is no longer bringing “fresh” solution to the bubble surface, but
rather liquid with non uniform gas content, leading to random variations of the growth
rate. This resembles what we observed in the previous chapter for the growth of N2
bubbles, where we conjectured that due to their very long growth times, we could
no longer assume that a bubble is growing in isolation. In that case, we concluded
that the uncontrollable presence of other bubbles, at distances that do not affect CO2
bubbles, was responsible for the variations in the growth rate after a certain time.

Finally, for the shortest separation we experimented with (l = 570 µm, figure
5.4d) the second bubble pair does not initially grow slower than the isolated one.
The bubbles in this case (and also in the previous one) are not allowed to reach their
preferred detachment radius (see figure 5.5a) but rather detach when the sum of their
radii is equal to the distance between them. Hence, the detachment is not due to
buoyancy overcoming surface tension, but rather because the oscillations induced
upon the coalescence of the bubbles that come in contact tear them from their contact
lines. Their smaller detachment radius (and time) imply that the depletion of their
medium is less than the other cases, which explains why the second bubble does not
grow initially slower. There is no longer a collaborative interaction between these
bubbles, instead they soon interfere with each other (when h∗≈ 0.85), and completely
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Figure 5.4: Dimensionless rate of change of the bubble area (dR̄/dx) scaled with S∗

for pairs of bubbles at distances of 1500 (a), 1000 (b), 760 (c) and 570 µm (d). Filled
symbols denote the left-hand bubble and empty ones the right-hand one. The darker
tone symbols in each graph correspond to the first bubble pair while the second has a
lighter shade. The black solid curve in each graph is a typical example of the second
(single) bubble that grows from an isolated nucleation site of the same size and under
the same experimental conditions. The black dashed curve shows the dimensionless
overlap h∗ and the vertical dashed lines are guides for the eye indicating when the
duo bubble growth starts to deviate from the single one.



66 CHAPTER 5. INTERACTION BETWEEN BUBBLES

avoid the development of a convective regime.

Detachment time and collective depletion

Figure 5.5b shows the relative detachment time τ = tdet(exp)/tdet(theo) of bubbles
growing sequentially. We calculate the theoretical detachment time, tdet(theo) as-
suming that the bubble would grow only by diffusion, thus R(t) ≈ at1/2 (i.e., the
dimensional version of eq.5.2), until the measured detachment radius. The value of a
is calculated with our proposed geometrical correction to the Epstein-Plesset solution
to account for the slowed-down growth and is given by a = S∗

√
2Dβ . Bubbles that

are closer to each other have longer relative detachment times. This is because the
longer bubbles are “allowed” to grow in a convective regime, the more they will com-
pensate for their initially slower growth rate. As a result of the cumulative local gas
depletion, in all cases τ increases as more bubbles grow and detach from the same
place. As mentioned in chapter 3 for the single bubble case, the increased detachment
time is due to the initial slowing down of the growth rate, but bubbles still reach the
same plateau value. After about ten bubbles, the plateau level starts to decrease as
well. Since the increase of τ per number of bubbles is linear for all experiments, we
find the slope for each case and plot it in figure 5.5c against the dimensionless dis-
tance between pits, l∗ = l/2RF . We can clearly see that for the shortest separation the
slope, and hence the cumulative depletion, is the smallest. Within the experimented
distances, the maximum occurs when l = 760 µm. When the bubbles detach without
having come in contact, the depletion is quite similar to the isolated bubble, and the
differences are within the error bars of our experiments.

How much two bubbles deplete their surroundings, and to what extent they in-
fluence each other through this, should be related to the amount of overlap of their
concentration profiles. We make an estimation of the overlapped volume Vov at the
moment of detachment. This is given by two times the volume of a spherical cap of
height h/2 on a sphere with radius Rdet +δ = Rdet +

√
πDtdet:

Vov =
2
3

π

(
h
2

)2[
3(Rdet +δ )− h

2

]
(5.5)

For each bubble configuration, this value is calculated by averaging tdet and Rdet over
the first five bubble pairs of each experiment and then averaging over all the experi-
mental repetitions. This is done in order to smooth out the small variations in detach-
ing radius for the cases when bubbles touch each other, caused by small differences
between the time it takes each bubble to emerge from its pit (up to three seconds).
For the sake of geometric simplicity, we momentarily ignore the presence of the wall,
and use the uncorrected Epstein-Plesset growth rate to obtain the theoretical values
to compare against. Figure 5.6 shows Vov divided by VF , the volume of a bubble that
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Figure 5.5: Detachment radius, Rdet, in microns (a) and relative detachment time,
τ = tdet(exp)/tdet(theo), (b) for pairs of bubbles at different distances and a single
bubble. For bubble pairs, filled symbols correspond to the left-hand bubble and empty
ones to the right-hand one. We fit lines to describe the progression of τ and plot their
slope in (c) The red circle and the dotted line correspond to the measurements for a
single bubble, which is denoted being infinitely far away from its neighbour.
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Figure 5.6: Volume of overlapping concentration profiles at the moment of bubble
detachment. In (a), divided by the constant volume of a bubble detaching at RF , and
in (b) divided by the actual volume of the bubble at the detaching moment. Lines are
the theoretical estimates, ignoring the presence of the substrate.

detaches with radius RF , i.e, that of a single bubble growing under the same circum-
stances (fig.5.6a) and also divided by the actual detachment volume Vdet (fig.5.6b).
The first one makes it clear that the overlap is maximum when l∗ = 1 and shows
that our bubbles reasonably follow that trend. When divided by the real detachment
volume, the left-hand part of the theoretical curve becomes constant since Vov ∝ Vdet,
and because h/2 = δ when bubbles detach at contact, dropping the dependence on l
from equation 5.5 (see appendix).

5.5 Growth of three neighbouring bubbles

Now we turn to the case of three bubbles that interact while growing; experimenting
with two different separations: l = 760 and 1000 µm and two geometrical arranges:
line and equilateral triangle. As one might expect, bringing a third bubble into the
relationship can complicate things and introduces different ways of interaction. The
loss of symmetry in the linear configuration and the possibility for desynchronized
detachment are the main causes for the new phenomena we observe.

Simultaneous growth

In figure 5.7 we compare the growth of the second triplet in each configuration against
an isolated bubble. In the in-line cases (5.7a and 5.7c), during the interfering inter-
action the bubble in the center is clearly more affected. For the larger separation
(5.7a), we see a collaborative interaction starting when h∗ ≈ 0.63; furthermore, the



5.5. GROWTH OF THREE NEIGHBOURING BUBBLES 69

three curves overlap until the onset of the interference, starting at h∗ ≈ 0.82, at which
point the growth rate reduction for the central bubble is more pronounced. In the case
with smaller separation (5.7b) there is a slight interfering interaction around x = 20,
which affects more the central bubble, but which is apparently overcome by the three
bubbles as they manage to enter a convective growth regime, and definitely start in-
terfering with each other when h∗ ≈ 0.69. Again, the middle bubble is noticeably
more affected. We recall that for a pair of bubbles with this separation, we observed
irregular oscillations of the growth rate in the final stages. Now, the irregularity does
not show up, but the oscillations do, once again suggesting an interplay of the inter-
actions caused by interference and mixing.

For the triangular arrangements, the curves (fig.5.7b and 5.7d) reflect the symme-
try of the situation, although they do not overlap as faithfully as those of the bubble
pairs. This is an indication of the increased sensitivity to perturbations of the three-
bubble system, which will be treated shortly. The experiment with l = 1000 µm
(5.7b) was a special case, since a defect in the hydrophobic coating caused the bub-
bles to detach somewhat earlier than RF , with radii that were slightly different from
pit to pit. Still, it allows us to observe a case were bubbles interact without coming
in contact. Similarly to the linear arrangement, they start a collaborative interaction,
albeit less pronounced, at h∗ ≈ 0.63. However, as soon as their growth rates start to
decrease, they detach. For the other triangle (5.7d), we see only interfering interac-
tion, starting when h∗ ≈ 0.70. One of the bubbles has a noticeably slower growth
rate, although it always follows the same tendency as the other two. We consistently
observed that the last bubble to emerge in this triangular configuration always grew
slightly more slowly than the other two.

Detachment

In the examples shown in figures 5.7a, 5.7c, and 5.7d, the three bubbles detached si-
multaneously. However, this is not always the case. The three bubble system is more
sensitive to perturbations which may lead to desynchronized growth and detachment.
We quantify the desynchronization time for a series of bubbles as:

tds = ∑
i

∣∣temi, j − T̄em j

∣∣ (5.6)

where temi, j is the time at which the j-th bubble emerges from pit i, and T̄em j is the
mean emergence time for the j-th bubble generation from the three pits. In figures
5.8a and 5.8c we show the desynchronization for the three-bubble lines. For the
larger separation, desynchronized detachment is not so common. From the four ex-
periments shown here, it happened only in one of them and the total tds after more
than twenty bubbles is just over 300 s, i.e., just over one bubble lifetime. This is to
be contrasted with the shorter separation, where out of nine experiments, all of them
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Figure 5.7: Rate of change of surface area for triplets of bubbles at distances of, 1000
(a, b) and 760 µm (c, d), arranged as lines (a, c) and equilateral triangles (b, d). Left-
pointing triangles represent the left-hand bubbles, and similarly for the right-pointing
ones. Filled symbols are for the middle bubble. For the triangle cases these positions
have no relevance due to the symmetry of the arrange, however, we keep the same
symbols representing their position in the images. We show only the second set of
bubbles for each case and compare them to the corresponding isolated bubble (black
solid curve). The black dashed curve shows the dimensionless overlap h∗ and the
vertical dashed lines are guides for the eye, indicating transitions in bubble growth
characteristics.
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eventually desynchronize, and tds can sometimes surpass 800 s (close to three bub-
ble lifetimes) after twelve bubbles. For the triangular geometries we always found
desynchronization for the l = 1000 µm case (figure 5.8b), explained by the fact that
those bubbles had different preferred detachment radii (figure 5.9b). We only saw
very small desynchronization for the l = 760 µm one, which was due to the slightly
different emerging times of the bubbles, and not to variations in the detachment mo-
ment, which always happened simultaneously.

Desynchronization

What causes the desynchronization? The two most significant sources of disturbances
that we have identified (besides the already complex spatial and temporal interac-
tions between bubbles) are the slight differences between the times at which bubbles
emerge from neighbouring pits, and the occasional rise of bubbles that grow in the
bottom of the tank. The first one is important only when bubbles detach by coming in
contact, and, of course, only for more than two bubbles. An earlier contact between
two of them will cause them to detach together, and leave the other free to grow to-
ward RF (figure 5.9c). Bubbles that do not touch overcome such perturbations by
“helping” each other to detach through the agitation they produce in the liquid upon
pinching-off and rising. A neighbouring bubble that is close to the buoyancy-surface
tension tipping point is prone to detach under such a disturbance. This was the case
when l = 1000 µm (figure 5.9a) where, despite bubbles not touching each other, the
central bubble was consistently forced to detach with a smaller radius. As for bub-
bles rising from the bottom, we have been aware of this throughout our experiments.
However, it had previously not been significant since we were observing only the
first and second bubbles that grow from the pits, which made it easy to verify that no
such event happened during those times. In addition to this, rising bubbles will pass
reasonably far away (at least 4 mm) from the pits thanks to the shielding provided by
the substrate. Nonetheless, occasionally, a rising bubble passed through the field of
view and we correlated it to a jump in the growth rate, which would quickly decay
and go back to ‘normal’ (see figure 5.10c at t ≈ 2400 s). Although we did not see
this in the l = 1000 µm of figure 5.8a, we cannot rule out the possibility that a rising
bubble might have caused the desynchronization that occurred.

The richest desynchronization phenomena occur for the in-line configuration with
l = 760 µm. In all experimental series it eventually happened; in one occasion only
after 12 triples had detached simultaneously (see square symbols in figure 5.8c) In
some cases, the desynchronization even reversed (circles, downward and leftward
pointing triangles in 5.8c) when the three bubbles once again detach together, and
afterwards desynchronized again in an inverted way. We take a close look at one such
series (the downward pointing triangles in figure 5.8c ) in figure 5.10 by plotting the
dimensionless mass transfer rate, represented by the Sherwood number, defined as
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Figure 5.8: Desynchronization time for series of bubble-trios. (a) For a line with
l = 1000 µm bubbles are usually synchronized. In one case, the bubbles became
desynchronized with the detachment of the fourth triplet. From there, tds grew slowly
until an amount equivalent to one bubble cycle. (b) For the triangle with l = 1000 µm
bubbles always desynchronized since the bubble from each pit had a slightly different
RF ; desynchronization is intrinsic to such a situation. (c) The line with l = 760 µm
shows the most varied types of desynchronization and reaches the highest values. (d)
The triangle with l = 760 µm was never seen to desynchronize, it only had small
differences in the emerging time, but not in the detachment one. Each set of symbols
represents one experiment.
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Figure 5.9: Detachment radii for trios of bubbles. (a) For a line with l = 1000 µm,
the bubbles at the extremes always detach at RF ≈ 450 µm, the middle bubble, which
grows slower, detaches at a smaller radius at the same time as its neighbours, due
to the agitation produced by their pinch-off and rise. (b) For the triangle with
l = 1000 µm the bubbles detach at smaller radii due to defects in the hydrophobic
coating. (c) For the line with l = 760 µm the middle bubble always detaches with the
smallest radius of the three (Rdet ≈ 360 µm), and it always goes at the same time as
one of the extremes (with Rdet ≈ 400 µm). The bubble that remains can grow until
RF . (d) For the triangle with l = 760 µm bubbles always detach together as soon as
two of them touch. Filled symbols represent the left-hand bubble, smaller, empty
symbols with a thicker line the central one, and empty ones the right-hand bubble.
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Sh = 2RṘ/Dβ , as a function of time for an entire series of growing and detaching
bubbles. This allows us to visualize the growth of the bubbles with respect to each
other when they are at different regimes, and also the effect of a detachment event
on the bubble(s) that remain. These detachment events are of two kinds: double
and single. In a double one, the central bubble detaches at the same time as one of
the extremes while in the single event, a bubble from the extremes detaches alone.
Desynchronization always starts with a double detachment and when the bubbles
are synchronized both types of event happen simultaneously. Detachment events are
indicated with vertical dotted lines, and labelled with the number of the event and the
letters ‘d’ or ‘s’ according to their type.

In the first panel of figure 5.10 we see that the first bubble triplet detached simulta-
neously at t ≈ 200 s. For the second triplet, the left-hand and central bubbles detach
earlier (2d), and the right-hand bubble’s mass transfer rate increases with a jump.
This increase must be due to the agitation caused by the rise of its neighbours, and
is maintained for the remaining 40 s of its growth until detachment, now that there is
no interference from nearby bubbles. When this bubble detaches (2s), the other two,
which are slowly growing, have a small jump. The right-hand bubble starts growing
shortly after, and eventually it overtakes the central one. At the next detachment (3d),
the growth rate of the right-hand feels again a large jump, and its mass transfer rate
keeps increasing after this. Notice that the middle bubble that starts growing after
(3d) is growing next to a large bubble with a rather high Sh, which limits it to a very
slow growth rate. After detachment (3s) the growth rates of the three bubbles start
varying somewhat irregularly. This continues all through the second panel, where
we consistently see that the right-hand bubble always reaches higher values of Sh
than the other two, the central bubble is mostly frustrated by its neighbours and only
allowed to grow slowly, and the left-hand one grows at a rate between the other two.
Notice, for example, that at (5s) the growth rate of the central bubble increases, while
the left-hand side decreases, or that after (6d) the right-hand bubble feels the usual
jump but its Sh sharply decreases afterwards before slightly rising again. With these
oscillating growth rates, after more than 2000 s of bubble growth, the three of them
detach together once again (9d and 8s). On the next cycle, they desynchronize again,
but this time the right-hand and center bubbles detach together, leaving the left-hand
one alone. Around t = 2400 s there is a clear disturbance due to a rising bubble from
the bottom, that causes a peak in the three bubbles’ growth rate, adding to the vari-
ations that were already taking place. Through the fourth panel, bubbles continue
growing with different rates from each other, but not reaching the values of Sh that
they did earlier. Finally, in the last detachment events shown, the desynchronization
goes back to its initial configuration, with left-hand and middle bubbles detaching
together and the right-hand one staying behind.
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Figure 5.10: Sherwood number Sh = 2RṘ/Dβ as function of time for each bubble in a series of
desynchronized growth and detachment events from a three pit line (l = 760 µm) Left, down and right
pointing triangles represent left, center, and right hand bubbles. Vertical lines indicate a detachment
event. Such events can be of two sorts: double (labeled ‘d’) where the middle bubble detaches along
with one from the extremes, or single (labeled ‘s’) when the left over bubble detaches. Along with the
letter indicating the type of event, we indicate its number. When the desynchronization starts, a ‘d’
event always takes place first. We indicate the separation between a ‘d’ event and its corresponding ‘s’
event with arrows.
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Collective depletion

The evolution of the detachment time for series of bubble triplets again gives us an
indication of the amount of collective depletion. In figure 5.11 we see that the bubbles
in triangular arrangements increase their detachment time more slowly than their
linear counterparts. Also, and similarly to the line with l = 1000 µm, all experiments
for each configuration roughly follow the same path. This is not the case for the line
with l = 760 µm, were there are larger variations in the values and the slopes of the
τ lines. In figure 5.12 we show the average of these slopes, comparing them to the
single and bubble pair cases, and also to a longer line of bubbles, discussed in the
next section. The slopes of the triangular configurations are averaged for the three
bubbles, since they are symmetric. For the in-line cases, when l = 1000 µm we also
average for the three positions, since the means at each position were very similar.
For the line with l = 760 µm there was a clear difference between the central bubble,
which had a higher slope, and the ones in the extremes; therefore we present them
separately. With respect to the distance, we see the same tendency as in the bubble
pairs: the highest slopes are found when l = 760 µm As for the geometry, lines have
higher slopes than triangles, which somewhat surprisingly, show the same behaviour
as the bubble pairs.

5.6 A longer line of bubbles

The final case we look at is a line of fourteen bubbles separated by l = 570 µm. Only
six of them, including the one at the end, were within the field of view of our long dis-
tance microscope objective, however, this allows us to observe the main features of
the arising interactions. There is one bubble that behaves clearly differently form the
rest: the one at the edge (in this case at the far right), which is in the most asymmetri-
cal position of the arrangement, having no neighbour to one side. This bubble always
develops the highest growth rate (figure 5.13a), detaches at a larger size than the rest
(figure 5.13b) and its detachment time increases slower in the bubble series (figure
5.13c). The second, but more subtle, different one is the bubble immediately to its
left, which has the smallest detachment size (figure 5.13b) and has a slightly lower
growth rate towards the end (figure 5.13a). The rest of the inner bubbles have similar
behaviour to each other. For detachment, bubbles tend to arrange in pairs, sometimes
in triplets. Normally, the edge bubble touches its neighbour and they detach together
(figure 5.13a), allowing for a small increase of the growth rate of the next bubble to
the left, which detaches with is next neighbour. The rest of the bubbles in the middle
of the line usually pair up, but sometimes detach in groups of three. Except for a few
exceptions (related to the simultaneous detachment of three bubbles), they detach at
the same radius (about l/2, see figure 5.13b). As for their collective depletion, on
figure 5.12 we show the slopes of the linear fits to the τ lines, once again separating
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Figure 5.11: Dimensionless detachment time τ = tdet(exp)/tdet(theo) for series of
bubble trios. For bubbles separated by l = 1000 µm and for the triangle with l =
760 µm τ increases gradually and in the same way for all experimental repetitions. In
the case of the line with l = 760 µm, the detachment times show more variations, due
to the different detachment sizes of the bubbles according to their position and their
desynchronization. Filled symbols represent the left-hand bubble, smaller, empty
symbols with a thicker line the central one, and empty ones the right-hand bubble.
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Figure 5.12: Average increase ∆tof the dimensionless detachment time per detached
bubble as a function of the dimensionless separation. Here we compare all the con-
figurations studied in this work. Bubble pairs are represented by empty circles, lines
by diamonds (for triplets) and squares (for the longer line), and triangles by trian-
gles. For the cases of lines of bubbles that detach upon contact, we show separately
the bubbles at the edges (orange symbols) and the ones in the center (green symbols).
Triangular configurations are always averaged. The black dotted line shows the mean
for the single bubble experiments (l∗ = ∞), which are also shown by the the red filled
circle.
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Figure 5.13: Six bubbles from a line of fourteen (l = 570 µm). (a) Sherwood number
Sh = 2RṘ/Dβ for the first two bubbles growing from four of the pits. The darkest
symbols represent the bubble on the extreme right and downward pointing triangles
its neighbour. These two detach together, and at that moment the next bubble to the
left feels a jump in its growth and detaches shortly afterwards with its other neigh-
bour. (b) Detachment radii for the six visible bubbles. The extreme right one detaches
at the largest size, and its neighbour at the smallest. (c) Dimensionless detachment
time. Once again, the edge bubble has a noticeably different behaviour.
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the edge bubble (with a smaller slope) from the inner bubbles. The slopes are some-
what smaller than their counterparts in the triplets with l = 760 µm, and for the edge
bubble, about the same as in the outer bubbles of the l = 1000 µm case.

5.7 Conclusions

We have studied the growth of bubbles that are close enough to affect each other’s
growth rate. The interaction between the bubbles is mediated by the overlap of the
concentration profiles that develop around them. Whereas for bubbles growing ex-
clusively by diffusion one would expect only a slowing down of the growth rates
when bubbles come close enough, the development of density-driven convection al-
lows for subtle collaborative interactions, where the bubbles actually increase their
growth rate. We distinguished between interactions that take place due to bubbles
growing next to each other at the same time and interactions due to gas depletion by
previous bubbles. The second kind mainly provokes a progressive slowing down of
subsequent bubbles. We proposed that this temporal interaction should be quantifi-
able by the amount of overlap of the concentration profiles, which depends on the
distance between the bubbles. A theoretical estimation, considering purely diffusive
growth, predicts a maximum depletion when the bubbles are separated by a distance
l = 2RF . However, in our experiments we find the maximum at a smaller separa-
tion (l ≈ 1.6RF ). We conjecture that this due to the complexities in the interaction
introduced by natural convection, which alters the concentration profile around the
bubbles. The experimental determination of the concentration profile is beyond our
means at this point, and determining it analytically –even for a single bubble– is not
straightforward. Quantitative evaluation of the effects of the convective mixing will
require the use of simulations.

Appendix A: Expressions for the overlapping volume

In order to calculate the overlapping volume of the concentration profiles of two
adjacent growing bubbles at the moment they detach, we start from the expression
describing the volume of a spherical cap of height b on a sphere with radius r

Vcap =
1
3

πb2(3r−b) (5.7)

From figure 5.1 we realize that the overlapping volume is twice the volume of a spher-
ical cap of height h/2 = Rdet +δ − l/2 on a sphere with radius Rdet +δ ; therefore

Vov =
2
3

π

(
Rdet +δ − l

2

)2[
3(Rdet +δ )−

(
Rdet +δ − l

2

)]
(5.8)
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For bubbles that detach upon touching each other and coalescing this expression is
simplified since in that case Rdet = l/2, from which

Vov =
2
3

πδ
2 (3Rdet +2δ ) (5.9)

Assuming a purely diffusive growth, we can substitute Rdet ≈ at1/2
det and δ ≈

(πDtdet)
1/2, where a = S(2Dβ )1/2 (see eq. 5.1), obtaining

Vov =
2
3

π
2D
[
3a+2(πD)1/2

]
t3/2 (5.10)

When divided by the constant value VF (the volume of a bubble that grows until
the detachment radius determined by the size of the nucleation site) this gives the
rising, left-hand part of the curve in figure 5.6a. If divided by the actual detachment
volume Vdet = 4πR3

det/3 we obtain

Vov

Vdet
=

1
2

πD
a3

[
3a+2(πD)1/2

]
(5.11)

i.e. a constant that depends on the experimental parameter β = ∆c/ρ (figure 5.6b).
For bubbles that do not touch each other, Vdet =VF . Re-arranging eq. 5.8 we can

write,
Vov

Vdet
=

(Rdet +δ )3− 3
4 l(Rdet +δ )2 + l3

16

R3
det

(5.12)

In order for overlap to occur (Rdet + δ ) ≥ l/2, and therefore the second term in the
numerator is at least three times larger than the third. Neglecting the l3 term, and
substituting the time expressions for Rdet and δ we get

Vov

Vdet
≈
[
a+(πD)1/2

]2
a3

[
a+(πD)1/2− 3

4
lt−1/2

]
(5.13)

which is a close approximation to the right-hand part of the curves in figures 5.6a and
5.6b
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6
Universality of Tip Singularity

Formation in Freezing Water Drops ∗

A drop of water deposited on a cold plate freezes into an ice drop with a pointy tip.
While this phenomenon clearly finds its origin in the expansion of water upon freez-
ing, a quantitative description of the tip singularity has remained elusive. Here we
demonstrate how the geometry of the freezing front, determined by heat transfer con-
siderations, is crucial for the tip formation. We perform systematic measurements of
the angles of the conical tip, and reveal the dynamics of the solidification front in a
Hele-Shaw geometry. It is found that the cone angle is independent of substrate tem-
perature and wetting angle, suggesting a universal, self-similar mechanism that does
not depend on the rate of solidification. We propose a model for the freezing front
and derive resulting tip angles analytically, in good agreement with observations.

∗Published as: [A.G. Marı́n, O.R. Enrı́quez, P. Brunet, P. Colinet and J.H. Snoeijer, Universality of
Tip Singularity Formation in Freezing Water Drops, Physical Review Letters 113, 054301 (2014)].
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6.1 Introduction

Liquid solidification can lead to intricate morphological structures, from dendritic
growth [91] to the fascinating complexity of snowflakes [92]. In an apparently much
simpler situation of a water drop freezing on a cold substrate, it has been observed that
the final shape of the ice drop is pointy [93–96], with a sharp tip that is reminiscent
of the domes of orthodox churches (figure 6.1). Intriguingly, the sharp tip appears
despite the presence of liquid surface tension, which usually tends to smooth out
sharp features. These singular ice drops can be observed in frozen water accretion
on aircraft cabins during flights, during solidification for freeze drying purposes [58],
and in recent studies on supercooling [97] and icing of substrates [98]. A similar
mechanism is thought to be at the origin of the formation of spiky micro-structures
following the irradiation by high-power ultra-short lasers in Germanium and Silicium
substrates [99], which like water are materials that expand upon freezing.

Though the formation of pointy ice drops has been attributed to the expansion of
water upon freezing, there is still no satisfactory explanation for this phenomenon.
Previous studies revealed that the freezing can indeed yield a tip singularity, by mod-
eling a planar solidification front reaching the top of the drop [93,95]. However, these
theories predict a singularity only when the ratio of solid and liquid densities is be-
low 0.75: this clearly does not explain the appearance of conical ice drops, since for
water ν ≡ ρs/ρ` = 0.92. The paradox can be resolved by assuming that the freezing
dynamics induces a contact angle, with a slope discontinuity at the solid/liquid/air
tri-junction point that depends on the freezing rate [93].

Alternatively, the singularity was also recovered for realistic ν when numerically
treating the solidification dynamics in full detail, but without the assumption of a
dynamic contact angle [94, 100].

The true mechanism behind the tip singularity has therefore remained elusive, in
particular since there is a lack of systematic experiments to which any of the theories
can be compared.

In this chapter we reveal that the geometry of the freezing front, essentially deter-
mined by the final stages of a quasi-steady heat transfer problem, is responsible for
the formation of pointy ice drops. First, we experimentally show that the cone angles
at the tip are universal, and do not depend on the substrate temperature, excluding
the influence of the solidification rate. Next, we reveal the boundary conditions of
the solidification front by tracking the freezing process in a Hele-Shaw geometry. It
is found experimentally, and explained theoretically from heat conduction, that the
front develops a spherical shape that ends perpendicularly to the solid-air interface.
Taking this into account into the mass balance during solidification, we then show
how the singularity emerges for any density ratio ν < 1. The theory predicts a cone
angle α = 131◦ for water drops (α defined in figure. 6.1c), which falls within the
range of experimental observations.
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Figure 6.1: Experimental set-up. (a) Water drops are deposited on a copper plate
immersed in a cooling bath of ethylene-glycol, ethanol and dry ice. (b) The shape of
the advancing freezing front can be observed using a 2D-like Hele-Shaw set-up. (c)
A freezing water droplet with red dye. The position of the tri-junction point is clearly
visible, while the images give also give a qualitative impression of the geometry of
the freezing front.
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Figure 6.2: Tip formation on freezing drops. (a) Sketch of the geometry during the
final stages of the freezing process. θ is the angle formed by the liquid interface with
the horizontal, φ is that formed by the solid-frozen interface with the horizontal, and
α the final tip angle. The drop radius R, and the “downward volume” Vd are also
defined. (b) Drops with different contact angles (i.e. aspect ratios) are achieved by
changing the deposition height, at different temperatures. (c) Measurement of the tip
angle α for the full range of temperatures explored. Base-down triangles represent
data from droplets at high contact angles and therefore a height-to-radius aspect ratio
H/R > 1. Base-up triangles represent drops with low contact angle characterized by
aspect ratios H/R < 1. We find no systematic dependence of α with global drop
shape and substrate temperature. The grey line indicates the theoretical prediction
(6.4).
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6.2 Experiments

Droplets of pure water (milli-Q, degassed) were frozen on a copper structure that is
partially immersed in a cooling bath composed of ethylene-glycol, ethanol and dry
ice (figure 6.1a). With this mixture, the temperature can be controlled in the range
-78 to −17◦C by modifying the volume fraction of the two liquids [101]. Droplets
of volume 4-8 µl were deposited using a syringe pump (Harvard Apparatus PHD
ULTRA) and a 200 µm capillary. The temperature on the plate was measured near
the droplet using a thermocouple. We focus here on temperatures above −44◦C, for
which reproducible experiments could be performed. At lower temperatures non-
directional freezing and multiple freezing fronts appear. The freezing process was
recorded, using a PCO camera (Sensicam QE), a long distance microscope (Edmund
Optics VZM1000) and diffused back lighting, until the tip was formed.

We extracted the final shape of the drops through image analysis and fitted third-
order polynomials to the left-hand and right-hand regions close to the tip. The angle
of the tip is then computed as the intersecting angle of the polynomials, with an ex-
perimental error bar of ±5◦ on average. The total time for the solidification is on the
order of 1 second for the coldest cases and 10 seconds for the warmest. Importantly,
the liquid near the contact line freezes long before reaching the equilibrium contact
angle, so that different contact angles can be achieved by varying the height of de-
position. This results in drops of different aspect ratio, H/R, where H is defined as
the final height of the ice drop and R the radius of the wetted area (see figure 6.2a for
geometric definitions and figure 6.2b for typical droplet shapes).

Figure 6.2b shows typical shapes of ice drops, as obtained for different temper-
atures and contact angles. Despite the large disparity of drop shapes, the formation
of the tip singularity appears to be independent of contact angle and substrate tem-
perature. This can be inferred from figure 6.2c, where we report the cone angle α

for more than 200 experiments, carried out at different temperatures (horizontal axis)
and for different aspect ratios (upward/downward symbols). All measurements fall
within a well-defined range of tip angles, characterized by an average and standard
deviation α = 139◦± 8◦. The data give no evidence for any correlation of α with
temperature and aspect ratio. The experiments thus show that the tip formation is not
influenced by global geometry of the drop, nor by the rate at which the solidification
occurs – the latter suggesting that the singularity is the outcome of a quasi-static pro-
cess. The observed variability in α is beyond the accuracy of the measurement, and
appears to be due to the conditions in which the experiments where performed, i.e.,
with the droplet exposed to air currents and vapor from the cooling bath.
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6.3 Freezing front

To obtain further insight in the tip formation, we next investigate the shape of the
solidification front. The still images in figure 6.1c suggest that the front does not
remain planar, as was also discussed in [102, 103]. However, in order to achieve
quantitative access to the advancing front, we constructed a Hele-Shaw cell with two
microscope slides separated by a 1 mm spacer (figure 6.1b). The cell was placed
on the copper plate and the capillary carefully maneuvered between the walls. The
gap is wide enough for the drop to form a conical tip, but this is not always visible
due to the presence of a wetting meniscus. To minimize image distortion due to this
meniscus, the glass is treated such that the wetting contact angle ≈ 90◦. This gives
a clear view on the quasi-two-dimensional freezing process – typical videos can be
found in the supplementary materials of [104].

Figure 6.3a shows that the solidification front in the Hele-Shaw cell grows to-
wards the top of the drop in a similar fashion as the unconfined experiment, although
the timescale of the process is a bit faster. In the first instants of the process, va-
por condensates on the glass slides resulting in a “frost halo” [97] around the drop.
Such event occurs simultaneously as the partial and kinetically-controlled recalescent
freezing [105], also visible in figure 6.3(a) as a brighter area above the freezing front.

Our prime interest here is to extract quantitative information on the geometry of
the freezing front. The front shown in figure 6.3a has a convex shape at the early stage
of the freezing, while at the last stages the curvature is inverted towards a concave
geometry. Interestingly, these profiles closely resemble two-dimensional numerical
simulations [94]. At all times, the experimentally observed freezing front appears to
be perpendicular to the ice-air interface. This is confirmed in figure 6.3c, where we
present the angle γ = θ + φ defined in figure 6.3b, as a function of the height z of
the tri-junction point. The red line corresponds to the average over 20 experiments,
performed at temperatures ranging from -30 to−15◦C. We find that the front is nearly
perpendicular during the entire experiment. During the final stages we find an average
and standard deviation γ = 87◦±8◦.

6.4 Heat-transfer-limited self-similar freezing dynamics

Coming back to the axisymmetric case we now derive the shape of the solid-liquid
front from the heat transfer in the late stages of the freezing process (cf. figure 6.2a).
We neglect any small-scale kinetic undercooling or Gibbs-Thomson effect (as con-
sidered, e.g., in [100]) such that the front here always remains at the equilibrium
melting temperature Tm. As the air surrounding the drop has a much smaller thermal
conductivity than the solid (and the liquid), the latent heat released by the advancing
front must be evacuated via the solid, while the liquid remains at uniform temper-
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Figure 6.3: Freezing experiments with droplets sandwiched in a Hele-Shaw cell. (a)
Evolution of the freezing front (green line) in different stages of the process. (b)
Sketch and definitions of angles and distances. (c) Front-to-interface angle γ plotted
against the relative height of the freezing front z/H. Within experimental variations,
we find γ ≈ 90◦.



90 CHAPTER 6. FREEZING WATER DROPS

ature Tm. The fact that heat cannot cross the solid-air boundary has an important
consequence: it implies that the isotherms, in particular the freezing front at Tm, are
locally perpendicular to the solid-air boundary, i.e., γ = 90◦. This simple argument
is in good agreement with the Hele-Shaw cell experiments, even though heat transfer
via the glass slides might not be entirely negligible there.

The final stages of the heat transfer are expected to be self-similar. Namely, the
angle γ made by the front with the external surface remains approximately constant,
and the freezing is characterized by a single length scale, r, the radius at the triple
junction. Based on this length, one can derive a scaling-law for the normal velocity vn

of the front, which is proportional to the rate at which latent heat released by the front
is evacuated. This gives vn ∼−dr/dt ∼ λsδT/ρsLmr, where λs is the solid thermal
conductivity, Lm is the latent heat of melting, and the undercooling δT = Tm−T .
Here we assumed that the heat transfer process in the solid is quasi-steady, i.e. that
the time scale of front motion r/vn is much larger than the thermal diffusion time
scale r2/κs, where κs is the thermal diffusivity of the solid. Taking into account
that κs = λs/ρscp,s, where cp,s is the thermal capacity of the solid, this is equivalent
to assuming that the Stefan number S = cp,sδT/Lm is small [94]. Actually, we find
S = 0.27 for the maximal value of δT = 44 K in our experiments, such that this quasi-
steadiness assumption is sufficiently accurate here (as also confirmed in figure 6.2c).
Note that solving the above energy balance for r leads to a classical r2-law, i.e., r2

decreases linearly with time during tip formation.
The above theory also provides the self-similar shape of the freezing front, which

is crucial for understanding the tip formation. The heat transfer problem amounts to
solving ∇2T = 0 in the solid, with the boundary condition that the isotherms make
an angle γ = 90◦. When the solid approaches a conical shape, the resulting isotherms
are portions of concentric spheres centered at the final cone tip (figure 6.2a). The
two-dimensional equivalent is that the freezing front is a portion of a circle – in good
agreement with the concave shape in the final stage (figure 6.3a). This solution is
stable with respect to dendrite formation given that cooling is from the solid side
[91]. Hence, the front will remain spherical during the self-similar final stages of tip
formation.

6.5 Geometric theory for tip formation

The results above point towards a scenario where the tip is formed by a quasi-static
mechanism. Based on this, we propose a model in the spirit of [93], but taking into
account the self-similar spherical geometry of the freezing front. The starting point
is mass conservation

d
dz

(V`+νVs) = 0, (6.1)
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here expressed in terms of liquid and solid volumes V`,s and density ratio ν . Since
temporal dynamics is unimportant, the conservation law has been written in terms of
a derivative with respect to z, the height of the tri-junction. The total liquid volume
can be decomposed into a spherical cap of angle θ and a downward volume Vd (cf.
figure 6.2a). The liquid and solid volumes then are

V` = r3 f (θ)+Vd ; Vs =−Vd +
∫ z

0
dz′πr(z′)2, (6.2)

where r(z) and θ(z) are the local radius and angle of the frozen drop, and the geom-
etry of a spherical cap gives

f (θ) =
π

3

(
2−3cosθ + cos3 θ

sin3
θ

)
. (6.3)

Closing the problem requires an expression for Vd , which in general implies a full
solution of the solidification front. For the final stages, however, we can take ad-
vantage of our previous observation that the front develops a spherical shape with
downward angle φ = γ − θ , such that Vd = r3 f (γ − θ). With this, and taking into
account that dr/dz =−1/ tanθ , expressions (6.1–6.3) give a closed set of equations
for r(z), indeed predicting a sharp tip as r→ 0 †. At the singularity, θ obeys

f (γ−θ)+ f (θ) = ν

[
f (γ−θ)+

π

3
tanθ

]
, (6.4)

from which we can infer α = π−2θ , for any density ratio.
The central result of this analysis is that, combined with our result that γ = 90◦,

equation (6.4) gives a parameter-free prediction for the tip angle of ice drops: α =
131◦. This is consistent with our experimental observation α = 139◦± 8◦, though
most experiments are slightly above the theoretical prediction. We tentatively at-
tribute the experimentally observed variability in the cone angle to variations of
γ . Inserting the γ-variations measured in the Hele-Shaw cell in (6.4) indeed gives
α = 133◦±5◦, in close agreement with experiments.

Equation (6.4) has an elegant interpretation in terms of the volumes before and
after freezing. After multiplication by r3, the left hand side represents the unfrozen
liquid volume, consisting of two spherical caps. This mass is to be transformed into
ice, where due to expansion factor ν the upward liquid sphere is transformed into a
cone of volume π

3 r3 tanθ . The tip angle is thus determined from purely geometrical
considerations. Interestingly, the model does not display a critical density ratio: a tip
is formed even for 0 < 1−ν � 1. This can be seen by expansion of (6.4), yielding
a nonzero angle θ = 12

π
f (γ)(1−ν), in radians. This is in marked contrast with the

†The tip formation is obtained by taking r→ 0. In this limit, the asymptotic solution is of the form
θ(r)−θcone = Arb, where the sought-for cone angle θcone is given by condition (4).
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model where the solidification front was assumed planar [93,95], which predicted tip
formation only for ν below a critical value 3/4.

6.6 Conclusion and outlook

This offers a fundamentally new view of freezing phenomena near free surfaces,
valid beyond the ice-cone formation studied here: our findings provide the first direct
measurement of the boundary condition for the freezing front, and highlight that
geometric aspects are more critical than dynamical effects. The confinement of heat
transfer within the solid-liquid system is a generic feature of solidification near free
surfaces. The results are therefore expected to have impact on a broad variety of
applications, such as icing, drop impact on cold surfaces and solidification during 3D
printing.



7
Summary and outlook

In this thesis we have conducted experimental studies on two different topics: the
growth of gas bubbles in slightly supersaturated liquids and the freezing of a water
droplet on a cold plate, which ends with the formation of a singular tip. Both topics
presented considerable experimental challenges which were both interesting and ex-
citing to face. The bubbles had a bit of a surprise hidden for us: the important effects
of the depletion layer around them, which had not been completely acknowledged
before. Although they had indeed been thought about in previous works on bubble
growth, they were only considered as affecting the growth of subsequent bubbles by
locally depleting the solution [35]. That they might affect the growth of a bubble in
‘real time’ had previously been overlooked.

In Chapter 2 we have described the design and building of the experimental set-
up that we used for the study of growing bubbles. Essentially a soda-machine, this
system allowed us to prepare a saturated solution of water with gas at a maximum
pressure of 1 MPa in a short time and afterwards supersaturate the solution to the
desired level in a smooth and controlled way. The silicon chips with hydrophobic
pits that we manufactured worked very well as nucleation sites. With these we were
able to control the number and position of bubbles in each experiment. We reported
the first tests in which we made sure that the system worked as it was supposed to
and presented the first observations of growing bubbles.

In Chapter 3 we observed the growth of a single bubble in a very slightly supersat-
urated solution. To our knowledge, no comparable experiment had been performed
before. What we expected to be just a test case, where we should have measured that
the bubble radius grew proportionally to t1/2 ended up presenting us with a surpris-
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ing puzzle, as we very consistently failed to recover such predicted growth rate. After
convincing ourselves that there was nothing wrong with our experiment, switching
our perspective from looking at R versus t1/2 curves, to instead look at the rate of
change of the bubble area as a function of t1/2 (figure 3.2) provided a valuable clue
towards the answer. This made it clear that the early part of the bubble growth was
follow the expected tendency, and later on departing from it. Finally, looking at the
dimensionless mass transfer rate (the Sherwood number) as a function of the mass
transfer Rayleigh number (the dimensionless buoyancy caused by the concentration
field around the bubble) confirmed that the mass transfer rate was being enhanced by
the onset of natural convection.

In Chapter 4 we delved further into the onset of natural convection. We attempted
to measure the concentration profile around the bubble by different optical means,
namely Schlieren imaging and interferometry. However, the long optical path in the
observation tank, combined with the very subtle difference in refractive index caused
by the concentration profile made this endeavour unfruitful. A direct experimental
measurement of the concentration profile would require that the experiment is con-
fined to a Hele-Shaw geometry, which would, of course, qualitatively change the
convective flow but might still allow some insight into the phenomenon. Nonethe-
less, by performing experiments at several supersaturations and for different initial
pressures, we were able to measure the time of convection onset in different condi-
tions. We compared this to a simple criterion to predict the onset time, which was
based on the balance of buoyancy and drag forces that act on the gas-depleted region
around the bubble, and found good agreement.

We have subsequently performed experiments with N2 in response to the question
of whether there would also be natural convection around bubbles of other gasses. In
all our experiments, the rate of change of bubble area of N2 bubbles initially followed
the same path as for CO2 bubbles. At the time when the transition to convective
growth would have been expected, the growth of N2 bubbles became erratic and was
no longer reproducible. We attributed this to the fact that the growth times are so
long that the isolation of N2 bubbles can no longer be ensured, and interaction with
bubbles growing on the edges of the substrate can become significant. However, the
observed transition suggests that mixing motion does indeed occur and influences
bubble growth.

In Chapter 5 we explored the simultaneous growth of bubbles. We started with the
case of two bubbles and observed two kinds of interaction: a spatial one when bub-
bles grow next to each other at the same time, and a temporal interaction of bubbles
growing from the nucleation site where other bubbles have grown and detached from
before. For the spatial interaction we identified a subtle, yet consistently repeatable
collaborative interaction where the convective flows around the bubbles contribute
to enhance each other’s growth rate with respect to the case of an isolated bubble.
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After such a regime, if the bubbles are close enough, they will eventually develop an
interfering interaction and slow down their growth. In order to quantify the temporal
interaction, we looked at the increase in the detachment time as a series of bubbles
grew and detached. The maximum effect of such interaction (i.e. the largest increase
in detachment time per detached bubble pair) is expected to happen when the overlap
between the concentration profiles of the bubbles is maximum. For purely diffusive
growth, this would be when the distance between them is exactly 2RF , with RF the
detachment radius determined by the size of the nucleation site. However, in our
experiments the maximum was found at a shorter distance, which we attribute to the
influence of convection.

Then we looked at triplets of bubbles in linear and triangular arrangements. Clear
differences were observable due to the symmetry, or lack thereof, of the arrangement.
In lines, the bubble in the middle was clearly more affected than the ones at the
extremes. The case of a bubble line where bubbles touch each other and detach
due to their coalescence at that point gave rise to an interesting de-synchronization
process, where usually two of the bubbles would detach together and leave the other
to grow alone for a while. They were never seen to develop a steady de-synchronized
stage, and therefore every experiment was different from the rest. Bubbles that do
not touch each other before detaching, or in triangular arrangements were less prone
to desynchronize, and when they did so it was always in a less pronounced way than
the line where bubbles do touch.

In Chapter 6 we looked at the tip singularity that is formed at the end of the freez-
ing process of a droplet on a cold plate. This presented the experimental challenge
of visualizing the evolution of the freezing front, which is not really possible with
conventional optical means through the surface of a spherical droplet. The crafty
development of an experiment to freeze a two-dimensional droplet, allowed us to
provide the first experimental measurements of the boundary conditions of the freez-
ing front and to show that the geometrical aspects are indeed more important than
the dynamic ones, therefore suggesting the universality and self-similarity of the tip
formation.

In both topics we have contributed to better understand the underlying physics.
In both topics there are many questions that could be tackled next. About the grow-
ing bubbles, it would be interesting to go further in the study of how they grow in
confinement and close to other bubbles. Although we provided a glimpse in that di-
rection by performing experiments where a bubble grew sandwiched between two
plates, there is a long way to go towards porous materials, which is the situation
where bubbles grow during oil production. The growth of hydrogen bubbles during
electrolysis is another promising direction which will be taken up using our experi-
mental set-up. This is of crucial importance in the production of hydrogen gas, which
is a very important candidate for energy sources alternative to fossil fuels. Another
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(opposite) direction which is interesting to pursue, and in fact is already in progress
in our lab, is the dissolution of bubbles upon re-pressurization of the solution. This
could again have geophysical implications, since the growth of many bubbles during
oil extraction tends to re-pressurize the surroundings, but it can also be related to the
stabilization of nanobubbles. Finally, one could also think about trying to tailor the
interaction of bubbles in order to take advantage of the mixing they produce. This
could be done by positioning nucleation sites of different sizes at such distances that
would favour and maximize the subtle collaborative interactions that we observed,
which might be of interest for bio-reactors where mixing at low Reynolds number is
important in order to promote mass transfer but without damaging the fragile cells in
there.

As for the freezing droplets there are also interesting questions to pursue. During
experiments we observed that despite using degassed water, bubbles would form at
the freezing front and become trapped in the ice. This could be due to atmospheric air
dissolving into the liquid. The solubility of air in water increases as the latter cools
down; hence, cold, degassed water is undersaturated and will tend to incorporate gas
to re-establish a saturated state. Other interesting questions are what determines the
arrest of the contact line and where exactly does the freezing start. We observed that,
upon landing on the plate, the contact line of the droplet can oscillate before becom-
ing arrested; however, we did not study this systematically. Finally, the solidification
of other materials bears a lot of interest concerning metal drop deposition and 3D
printing.

To conclude, I go back to the beginning and paraphrase Varro: Had I possessed
the leisure, Fundania, I should write in a more serviceable form what now I must set
forth as I can, reflecting that I must hasten; for if man is a bubble, as the proverb has
it, all the more so is a Ph.D.
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Samenvatting

In dit proefschrift hebben we twee verschillende onderwerpen experimenteel bestu-
deerd: de groei van de gasbellen in licht oververzadigde vloeistoffen en het bevriezen
van waterdruppels op een koude plaat; een proces dat eindigt met de vorming van een
bijzondere tip. Beide onderwerpen bevatten grote experimentele uitdagingen die zo-
wel wetenschappelijk interessant als spectaculair om te zien zijn. De bellen stelden
ons voor een verrassing: het grote effect van de depletielaag om hen heen was tot
op heden onbekend. In eerdere studies beschouwde men de rol van de depletielaag
wel, maar enkel als zijnde van invloed op groei van de opvolgende luchtbellen door
het plaatselijk be invloeden van het concentratieveld [35]. Dat de depletielaag ook de
groei van een bel in “real time”zou kunnen be invloeden was echter tot nu toe over
het hoofd gezien.

In hoofdstuk 2 hebben we het ontwerp en de bouw van de experimentele opstel-
ling die we hebben gebruikt voor de studie naar groeiende bellen beschreven. De
opstelling is in feite een soda-machine waarmee we in korte tijd een verzadigde op-
lossing van water met gas kunnen bereiden bij een maximale druk van 1 MPa. Daarna
kunnen we op de oplossing op een soepele en gecontroleerde manier oververzadigen
tot het gewenste niveau. Als substraat gebruikten wij siliciumchips met hydrofobe
putjes die dienst doen als nucleatieplekken. Hiermee konden we het aantal bellen
en hun positie in elk experiment precies controleren. We presenteerden de resultaten
van de eerste testexperimenten die we gebruikten om te laten zien dat het systeem
naar tevredenheid werkte en we lieten tevens de eerste waarnemingen van groeiende
bellen zien.

In hoofdstuk 3 bestudeerden we de groei van een enkele bel in een licht over-
verzadigde oplossing. Voor zover wij weten is een dergelijk experiment niet eerder
uitgevoerd. Het geplande testexperiment, waarbij we verwachtten te vinden dat de
belstraal in de tijd groeit als t1/2, bleek een ingewikkelde puzzel te zijn: telkens weer
bleek dat we niet de verwachte groeisnelheid vonden. Na onszelf ervan overtuigd
te hebben dat er niets mis was met ons experiment, veranderden we ons perspectief
door in plaats van te kijken naar de R versus t1/2 curves, te kijken naar de tijdsafge-
leide van het beloppervlak als functie van t1/2 (figuur 3.2). Dit nieuwe perspectief
leverde een waardevolle aanwijzing voor de oplossing van het probleem. Het bleek
dat de eerste fase van de belgroei volgens de verwachte tendens plaatsvond en dat
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afwijkingen hiervan pas in latere fases optraden. Door te kijken naar de dimensieloze
massaoverdracht (Sherwood getal) als functie het Rayleigh getal voor massaover-
dracht (het dimensieloze drijfvermogen veroorzaakt door het concentratieveld rond
de bel) hebben we tenslotte kunnen bevestigen dat massaoverdracht wordt versterkt
door het optreden van natuurlijke convectie.

In hoofdstuk 4 zijn we nader ingegaan op het ontstaan van de natuurlijke convec-
tie. We hebben met verschillende optische technieken, te weten Schlierenvisualisatie
en interferometrie, geprobeerd om het concentratieprofiel rond de bel te meten. Ech-
ter, de lange optische weglengte van de observatietank, gecombineerd met het zeer
subtiele verschil in brekingsindex veroorzaakt door het concentratieprofiel zorgden
ervoor dat deze pogingen tevergeefs waren. Een directe experimentele meting van
het concentratieprofiel vereist dat het experiment wordt beperkt tot een Hele-Shaw
geometrie. Dit zal uiteraard kwalitatief de convectieve stroming be invloeden, maar
kan nog steeds tot waardevolle inzichten in het fenomeen leiden. Desalniettemin
hebben we, door het uitvoeren van experimenten bij verschillende mates van over-
verzadiging en voor verschillende begindruk, het ontstaan van natuurlijke convectie
onder verschillende omstandigheden kunnen meten. Deze resultaten hebben we ver-
geleken met een eenvoudige criterium voor de aanvangstijd, gebaseerd op de balans
tussen het drijfvermogen en de wrijvingskrachten die werken op het gasarme gebied
rond de bel, hetgeen tot een goede overeenkomst leidde.

Wij hebben eveneens experimenten uitgevoerd met N2 om te zien of er ook na-
tuurlijke convectie is rond bellen bestaande uit een ander gas. In al onze experimenten
vonden wij dat de groei van het beloppervlak van N2 bellen aanvankelijk op dezelfde
manier plaatsvindt als voor ce CO2 bellen. Echter, op het moment dat de overgang
naar convectieve groei verwacht werd de groei van de N2 bellen heel onregelmatig
en niet meer reproduceerbaar. We wijten dit aan het feit dat voor een dermate lange
groeitijd de individuele N2 bellen niet meer ge isoleerd zijn en de interactie met bellen
die groeien op de randen van het substraat belangrijk wordt. Echter, de waargenomen
overgang suggereert dat de mengbeweging inderdaad optreedtafvlakt en de groei van
bellen be invloedt.

In hoofdstuk 5 hebben we de gelijktijdige groei van bellen verkend. We begon-
nen met twee bellen en we namen twee soorten interactie waar: een spati ele wanneer
bellen naast elkaar groeien en een temporele wanneer bellen groeien van de nuclea-
tieplaats waar eerder andere bellen gegroeid en losgelaten hebben. Voor de spati ele
interactie identificeerden we een subtiele, maar consistent reproduceerbare samen-
werkingsinteractie waarbij de convectieve stromingen rondom de bellen elkaars groei
versterken ten op zichte van het geval van een ge isoleerde bel. Na een dergelijke fase
zullen de bellen, als ze zich dicht genoeg bij elkaar bevinden, een storende interactie
ontwikkelen en zal hun groei vertragen. Om de temporele interactie te kwantificeren
hebben we gekeken naar de toename van het loslaattijd wanneer een reeks van bellen
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groeit en loslaat. Het maximale effect van een dergelijke interactie ( textit ie de groot-
ste toename in de loslaattijd van een ge isoleerd bellenpaar) wordt verwacht wanneer
de overlap van de concentratieprofielen van de bellen maximaal is. Voor een puur dif-
fusieve groei zou dit zijn wanneer de afstand tussen de bellen precies 2RF bedraagt,
met RF de loslaatstraal zoals bepaald door de grootte van de nucleatieplaats. In onze
experimenten werd het maximum gevonden bij een kortere afstand, die wij toeschrij-
ven aan de invloed van convectie. Vervolgens hebben we gekeken naar lineaire en
driehoekige patronen gevormd door drie bellen. We konden duidelijke verschillen
waarnemen vanwege de symmetrie (of juist de afwezigheid daarvan) in de patronen.
In lineaire patronen was de middelste bel duidelijk meer be invloed dan de bellen aan
de randen. In het geval van een lineair patroon waarbij de bellen loslaten ten gevolge
van hun coalescentie was een interessante desynchronisatie waarneembaar, waarbij
meestal twee bellen samen loslieten terwijl de derde alleen nog even verder groeide.
De desynchronisatie fase was echter nooit stabiel, waardoor elk experiment anders
was dan de andere. Bellen die elkaar niet raakten voor ze loslieten of die zich in
een driehoekig patroon bevonden waren minder gevoelig voor desynchronisatie, en
als er al desynchronisatie optrad was dat altijd minder uitgesproken dan bij de lineair
gerankschikte bellen die elkaar raken.

In hoofdstuk 6 is gekeken naar de singulariteit die zich ontwikkelt aan de boven-
kant van een bevriezende druppel op een koude plaat. De experimentele uitdaging
was hier om de ontwikkeling van het bevriezingsfront te visualiseren, hetgeen niet
goed mogelijk is met conventionele optische technieken vanwege het bolvormige op-
pervlak van de druppel. Een ingenieus experiment waarbij we een tweedimensionale
druppel bevroren stelde ons in staat om voor het eerst de randvoorwaarden van het
bevriezingsfront te meten en om aan te tonen dat geometrische aspecten inderdaad
belangrijker zijn dan dynamische. Dit toont de universaliteit en gelijkvormigheid van
de tipvorming aan.

Bij beide onderwerpen hebben we bijgedragen aan een beter begrip van de on-
derliggende fysica, maar in beide zijn ook nog veel open vragen. Zo zou het inte-
ressant zijn om na te gaan hoe bellen groeien in een begrensd systeem en dicht in
de buurt van andere bellen. Hoewel we een eerste aanzet hebben gemaakt door te
kijken naar de groei van bellen tussen twee platen, is er nog een lange weg te gaan
naar poreuze materialen, hetgeen overeenkomt met de situatie van groeiende bellen
tijdens de olieproductie. De groei van waterstofbellen tijdens elektrolyse is een an-
dere veelbelovende richting die met behulp van onze experimentele opstelling kan
worden bestudeerd. Dit is van cruciaal belang voor de productie van waterstofgas,
wat een belangrijke alternatieve energiebron vormt voor fossiele brandstoffen. Een
andere (tegengestelde) richting die interessant is om verder te verkennen, en in feite
al aan de gang is in ons laboratorium, is het oplossen van bellen bij het opnieuw onder
druk zetten van de oplossing. Dit kan weer geofysische gevolgen hebben, aangezien
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de groei van vele bellen tijdens oliewinning steeds opnieuw leidt tot een drukver-
hoging, maar het kan ook gerelateerd zijn aan de stabilisatie van nanobellen. Ten
slotte kan men ook denken aan het controleren van de interactie tussen bellen om zo
gebruik te kunnen maken van het menggedrag dat ze produceren. Dit kan door de
nucleatieplaatsen zo te positioneren dat bellen van verschillende grootte zich op een
dusdanige afstand van elkaar bevinden dat hun subtiele samenwerkende interacties
maximaal benut kunnen worden. Dit is van belang in bioreactoren waar mengen van
vloeistof bij lage Reynolds getallen belangrijk is om massaoverdracht te bevorderen
zonder dat kwetsbare cellen beschadigd raken.

Ook voor de bevriezende druppels zijn er nog veel interessante open vragen. Tij-
dens de experimenten zagen we dat, ondanks het gebruik van ontgast water, bellen
vormen bij het vriesfront die vast komen te zitten in het ijs. Dit kan te wijten zijn aan
atmosferische lucht die oplost in de vloeistof. De oplosbaarheid van de lucht in het
water neemt toe als de het water afkoelt; vandaar dat koud ontgast water onderverza-
digd is en de neiging zal hebben om gas op te nemen om zo opnieuw een verzadigde
toestand te bereiken. Andere interessante vragen zijn wat bepalend is voor het tot stil-
stand komen van de contactlijn en van waar precies de bevriezing begint. We zagen
dat, nadat de druppel op de plaat terecht gekomen was, de contactlijn van de druppel
nog een tijdje kan oscilleren voordat hij tot stilstand komt; dit fenomeen hebben we
echter niet systematisch bestudeerd. Ten slotte is het stollen van andere materialen
interessant met het oog op de toepassing van het printen van metaaldruppels en 3D
printen.
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Bob, Pawel, Maurizio, Kasia, Álvaro, Juan Carlos, Anne, Jorge, Matteo, Edit, Marine, Effie,
Massi, Ada, and Diego.

Another of the most cherished parts of the time here has been the group of friends with
whom we have shared so much, and in our own language. Growing vegetables together,
bicycle excursions, concerts, dinners, parties and (sometimes heated) debates. Vicky and
Lorenzo, Nayeli and Eduardo, Maite and Jorge, Diru and Juan, you are very special and
although it’s time for most of us to leave, you will always remain dear and close friends for
us. Janik and Miguel, your visits in Enschede have been short a widely spaced, yet we have
become good friends. I look forward to keep building that when we are back in Mexico.

There are also several collaborators from other places who I am grateful to. Claus-Dieter
and the Singapore crowd, Roberto, Pedro, Tandiono, Firdaus, Chon U and Feng Fang, with
whom I spent a great three-month internship at the end of my Master’s. The freezing drop
coalition in Brussels and Paris, Pierre and Phillippe, and Sam, who spent an intense week
trying to visualize convection around droplets with me.

Special thanks to Javier Rodrı́guez for the enthusiastic and stimulating conversations
we’ve had, the collaboration for solving bubble problems and for reading my thesis and giving
useful feedback, to Serge Lemay for pointing out related topics to my research in areas that
were unknown for me, and to Anton Darhuber for reading this thesis and participating in the
committee.

There are several places that I have called home at some point. In all of them there are
special persons that have made of each place a true home. Here in Enschede, Frank and
Jolanda have been the best neighbours one could ask for. Back in Brasil, Bárbara and Alda
were like a sister and a mother to me as soon as I arrived. Bárbara and Marcelo, it’s fantastic
that we manage to keep meeting in different places every now and then. I deeply cherish your
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